
dReach: δ-Reachability Analysis
for Hybrid Systems

Soonho Kong, Sicun Gao, Wei Chen, and Edmund Clarke

Computer Science Department, Carnegie Mellon University, USA

Abstract. dReach is a bounded reachability analysis tool for nonlinear
hybrid systems. It encodes reachability problems of hybrid systems to
first-order formulas over real numbers, which are solved by delta-decision
procedures in the SMT solver dReal. In this way, dReach is able to handle
a wide range of highly nonlinear hybrid systems. It has scaled well on
various realistic models from biomedical and robotics applications.

1 Introduction

dReach is a bounded reachability analysis tool for hybrid systems. It encodes
bounded reachability problems of hybrid systems as first-order formulas over the
real numbers, and solves them using δ-decision procedures in the SMT solver
dReal [13]. dReach is able to handle a wide range of highly nonlinear hybrid
systems [17,14,16,3]. Figure 1 highlights some of its features: on the left is an
example of some nonlinear dynamics that dReach can handle, and on the right
a visualized counterexample generated by dReach on this model.

y
z
zdx

z
zm

x
z
zm

kz
zkk

kz
zkk

dt
dv

zz
dt
dz

y
z
zdx

z
zm

dt
dy

x
z
zm

kz
zkk

kz
zkk

dt
dx

yy

xx

yy

xx

¸
¸
¹

·
¨
¨
©

§
�¸̧
¹

·
¨̈
©

§
��¸̧

¹

·
¨̈
©

§
��

¸
¸
¹

·
¨
¨
©

§
¸̧
¹

·
¨̈
©

§
��¸̧

¹

·
¨̈
©

§
�
�

��¸̧
¹

·
¨̈
©

§
�
�

�

�

¸
¸
¹

·
¨
¨
©

§
�¸̧
¹

·
¨̈
©

§
��¸̧

¹

·
¨̈
©

§
�

¸
¸
¹

·
¨
¨
©

§
¸̧
¹

·
¨̈
©

§
��¸̧

¹

·
¨̈
©

§
�
�

��¸̧
¹

·
¨̈
©

§
�
�

�

ED

ED

W

ED

ED

00
1

0
1

4

3
3

2

1
1

0

00
1

0
1

4

3
3

2

1
1

2

11

1)1()1(

11

1)1()1(

:flow

Mode 1 (on-treatment)

Mode 2 (off-treatment)

(a) An example of nonlinear hybrid sys-
tem model: off-treatment mode of the
prostate cancer treatment model [17]

(b) Visualization of a generated counterex-
ample. Change in the shade of colors rep-
resents discrete mode changes.

Fig. 1: An example of nonlinear dynamics and counterexample-generation.

It is well-known that the standard bounded reachability problems for sim-
ple hybrid systems are already highly undecidable [2]. Instead, we work in the

framework of δ-reachability of hybrid systems [11]. Here δ is an arbitrary pos-
itive rational number, provided by the user to specify the bound on numerical
errors that can be tolerated in the analysis. For a hybrid system H and an unsafe
region unsafe (both encoded as logic formulas), the δ-reachability problem asks
for one of the following answers:

– safe: H cannot reach unsafe.
– δ-unsafe: Hδ can reach unsafeδ.

Here, Hδ and unsafeδ encode (δ-bounded) overapproximations of H and unsafe,
defined explicitly as their syntactic variants. (See Section 4.2 in the Appendix.)
It is important to note that the definition makes the answers no weaker than
standard reachability: When safe is the answer, we know for certain that H
does not reach the unsafe region (no δ is involved); when δ-unsafe is the answer,
we know that there exists some δ-bounded perturbation of the system that can
render it unsafe. Since δ can be chosen to be very small, δ-unsafe answers in fact
discover robustness problem in the system, which should be regarded as unsafe
indeed. We have proved that bounded δ-reachabilty is decidable for a wide range
of nonlinear hybrid systems, even with reasonable complexity bounds [11]. This
framework provides the formal correctness guarantees of dReach.

Apart from solving δ-reachability, the following key features of dReach dis-
tinguish it from other existing tools in this domain [7,9,1,8,15,5,6].

1. Expressiveness. dReach allows the user to describe hybrid systems using
first-order logic formulas over real numbers with a wide range of nonlinear func-
tions. This allows the user to specify the continuous flows using highly nonlinear
differential equations, and the jump and reset conditions with complex Boolean
combinations of nonlinear constraints. dReach also faithfully translates mode
invariants into ∃∀ logic formulas, which can be directly solved under certain
restrictions on the invariants.

2. Property-guided search. dReach maintains logical encodings (the same ap-
proach as [6]), whose size is linear in the size of the inputs, of the reachable states
of a hybrid system [11]. The tool searches for concrete counterexamples to fal-
sify the reachability properties, instead of overapproximating the full reachable
states. This avoids the usual state explosion problem in reachable set compu-
tation, because the full set of states does not need to be explicitly stored. This
change is analogous to the difference between SAT-based model checking and
BDD-based symbolic model checking.

3. Tight integration of symbolic reasoning and numerical solving. dReach del-
egates the reasoning on discrete mode changes to SAT solvers, and uses numerical
constraint solving to handle nonlinear dynamics. As a result, it can combine the
full power of both symbolic reasoning and numerical analysis algorithms. In par-
ticular, all existing tools for reachable set computation can be easily plugged-in
as engines for solving the continuous part of the dynamics, while logic reasoning
tools can overcome the difficulty in handling complex mode transitions.

The paper is structured as follows. We describe the system architecture in
Section 2, and give some details about the logical encoding in the tool in Section

3. We then explain the input format and usage in Section 4. More details and
examples are given in the Appendix.

2 System Description

The system architecture of dReach is given in Figure 2. We ask the user to
provide the following input file and two parameters:

– The input file specifies the hybrid system, the reachability properties in
question, and some time bounds on the continuous flow in each mode. The
grammar is described in Section 4.1.

– A bound on the number of mode changes.
– A numerical error bound δ, as explained in Section A5. in the Appendix.

From these inputs, dReach generates a logical encoding that involves existential
quantification and universal quantification on the time variables. The logical en-
coding is compact, always linear in the size of the inputs. The tool then makes
iterative calls to the underlying solver dReal [13] to decide the reachability prop-
erties. When the answer is δ-reachable, dReach generates a counterexample and
its visualization. When the answer is unreachable, no numerical error is involved
and a (partial, for now) logical proof of unsatisfiability can be provided [12].

dReach

Hybrid System
Model + Specification

(drh)
BMC

Encoder

dReal

SMT2
formula

Numerical Error (δ)

Maximum Jump Depth
(k)

δ-SAT

UNSAT

δ-reachable
+ Counterexample

(Visualization)

Unreachable
+ Proofs
 (partial)

DPLL<T>

SAT
Solver

ICP Solver

ODE
Solver

Fig. 2: Architecture of dReach: It consists of an bounded model-checking mod-
ule and an SMT solver, dReal. In the first phase, the Encoder module trans-
lates an input hybrid system into a logic formula. In the second phase, an SMT
solver, dReal, solves the encoded δ-reachability problem using a solving frame-
work that combines DPLL(T), Interval Constraint Propagation, and reliable
(interval-based) numerical integration.

3 Logical Encoding of Reachability

The details of our encoding scheme is given in [11]. Here we focus on explaining
how differential equations and the universal quantifications generated by mode

invariants are encoded, as an extension of the SMT-LIB [4] standard. Although
such formulas are automatically generated by dReach from the hybrid system
descrpition, the explanation below can be helpful for understanding the inner
mechanism of our solver.

Encoding integrations. In each mode of a hybrid system, we need to specify
continuous flows defined by systems of ordinary differential equations. We extend
SMT-LIB with a command define-ode to define such systems. For instance, we
use define-ode as follows to assign a name flow1 to a group of ODE, dx

dt = v

and dv
dt = −x2.

(define-ode flow1 ((= d/dt[x] v) (= d/dt[v] (- 0 (ˆ x 2)))))

We then allow integration terms in the formula. We view the solution of system
of differential equations as a constraint between the initial-state variables, time
duration, and the end-state variables. We can then write

(= [x_t_1 ... x_t_n] (integral 0 t [x_0_1 ... x_0_n] flow_i)),

to represent x = x0 +
∫ t
0

flow i(x(s))ds. Note that we do not need to explicitly
mention x(s) as a function in the encoding, which can be inferred by the solver.

Universal quantification for mode invariant constriants. To encode mode invari-
ants in hybrid systems, we need ∃∀t-formulas [14] which is a restricted form of
∃∀ formula where the universal quantifications are limited to the time variables.
In drh, we introduce a new keyword forall t to encode ∃∀t formulas. Given a
time bound [0, timei], mode invariant f at mode n is encoded into (forall t n

[0 time i] f).

4 Using dReach

4.1 Input Format

The input format for describing hybrid systems and reachability properties con-
sists of five sections: macro definitions, variable declarations, mode definitions,
and initial condition, and goals. We focus on intuitive explanations here, and
the formal grammar is given in the Appendix. Figure 3 shows how to describe a
small example hybrid system, an inelastic bouncing ball with air resistance.

– In macro definitions, we allows users to define macros in C preprocessor style
which can be used in the following sections. Macro expansions occur before
the other parts are processed.

– A variable declaration specifies a real variable and its domain in a real in-
terval. dReach requires special declaration for time variable, to specify the
upperbound of time duration.

– A mode definition consists of mode id, mode invariant, flow, and jump. id is
a unique positive interger assigned to a mode. An invariant is a conjuction
of logic formulae which must always hold in a mode. A flow describes the
continuous dynamics of a mode by providing a set of ODEs. The first formula
of jump is interpreted as a guard, a logic formula specifying a condition to
make a transition. Note that this allows a transition but does not force it.
The second argument of jump, n denotes the target mode-id. The last one is
reset, a logic formula connecting the old and new values for the transition.

– initial-condition specifies the initial mode of a hybrid system and its initial
configuration. goal shares the same syntactic structure of initial-condition.

1 #define D 0.45
2 #define K 0.9
3 [0, 15] x; [9.8] g; [-18, 18] v; [0, 3] time;
4 { mode 1;
5 invt: (v <= 0); (x >= 0);
6 flow: d/dt[x] = v; d/dt[v] = -g - (D * v ˆ 2);
7 jump: (x = 0) ==> @2 (and (x’ = x) (v’ = - K * v)); }
8 { mode 2;
9 invt: (v >= 0); (x >= 0);

10 flow: d/dt[x] = v; d/dt[v] = -g + (D * v ˆ 2);
11 jump: (v = 0) ==> @1 (and (x’ = x) (v’ = v)); }
12 init: @1 (and (x >= 5) (v = 0));
13 goal: @1 (and (x >= 0.45));

Fig. 3: An example of drh format: Inelastic bouncing ball with air resistance.
Lines 1 and 2 define a drag coefficientD = 0.45 and an elastic coefficientK = 0.9.
Line 3 declares variables x, g, v, and time. At lines 4 - 7 and 8 - 11, we define two
modes – the falling and the bouncing-back modes respectively. At line 12, we
specify the hybrid system to start at mode 1 (@1) with initial condition satisfying
x ≥ 5 ∧ v = 0. At line 13, it asks whether we can have a trajectory ending at
mode 1 (@1) while the height of the ball is higher than 0.45.

4.2 Command Line Options

dReach follows the standard unix command-line usage:

dReach <options> <drh file>

It has the following options:

– If -k <N> is used, set the unrolling bound k as N (Default: 3). It also provides
-u <N> and -l <N> options to specify upper- and lower-bounds of unrolling
bound.

– If --precision <p> is used, use precision p (Default: 0.001).
– If --visualize is set, dReach generates extra visualization data.

We have a web-based visualization toolkit1 which processes the generated visu-
alization data and shows the counterexample trajectory. It provides a way to

1 The detailed instructions are available at https://github.com/dreal/dreal/blob/
master/doc/ode-visualization.md.

https://github.com/dreal/dreal/blob/master/doc/ode-visualization.md
https://github.com/dreal/dreal/blob/master/doc/ode-visualization.md

navigate and zoom-in/out trajectories which helps understand and debug the
target hybrid system better.

References

1. M. Althoff and B. H. Krogh. Reachability analysis of nonlinear differential-
algebraic systems. IEEE Trans. Automat. Contr., 59(2):371–383, 2014.

2. R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho. Hybrid automata: An
algorithmic approach to the specification and verification of hybrid systems. In
R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, editors, Hybrid Systems,
volume 736 of Lecture Notes in Computer Science, pages 209–229. Springer, 1992.

3. H. u. Asad, K. D. Jones, and F. Surre. Verifying robust frequency domain proper-
ties of non linear oscillators using SMT. In Design and Diagnostics of Electronic
Circuits Systems, 17th International Symposium on, pages 306–309, April 2014.

4. C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB Standard: Version 2.0. In
A. Gupta and D. Kroening, editors, Proceedings of the 8th International Workshop
on Satisfiability Modulo Theories (Edinburgh, UK), 2010.

5. X. Chen, E. Ábrahám, and S. Sankaranarayanan. Taylor model flowpipe construc-
tion for non-linear hybrid systems. In RTSS, pages 183–192, 2012.

6. A. Cimatti, S. Mover, and S. Tonetta. Smt-based verification of hybrid systems. In
Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, July
22-26, 2012, Toronto, Ontario, Canada., 2012.

7. M. Fränzle, T. Teige, and A. Eggers. Engineering constraint solvers for automatic
analysis of probabilistic hybrid automata. J. Log. Algebr. Program., 79(7):436–466,
2010.

8. G. Frehse. Phaver: Algorithmic verification of hybrid systems past hytech. In
M. Morari and L. Thiele, editors, HSCC, volume 3414 of Lecture Notes in Computer
Science, pages 258–273. Springer, 2005.

9. G. Frehse, C. L. Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado,
A. Girard, T. Dang, and O. Maler. SpaceEx: Scalable verification of hybrid sys-
tems. In Computer Aided Verification - 23rd International Conference, CAV 2011,
Snowbird, UT, USA, July 14-20, 2011. Proceedings, pages 379–395, 2011.

10. S. Gao, J. Avigad, and E. M. Clarke. Delta-complete decision procedures for satis-
fiability over the reals. In B. Gramlich, D. Miller, and U. Sattler, editors, IJCAR,
volume 7364 of Lecture Notes in Computer Science, pages 286–300. Springer, 2012.

11. S. Gao, S. Kong, W. Chen, and E. M. Clarke. Delta-complete analysis for bounded
reachability of hybrid systems. CoRR, abs/1404.7171, 2014.

12. S. Gao, S. Kong, and E. Clarke. Proof generation from delta-decisions. In SYNASC,
2014.

13. S. Gao, S. Kong, and E. M. Clarke. dReal: An SMT solver for nonlinear theories
over the reals. In CADE, pages 208–214, 2013.

14. S. Gao, S. Kong, and E. M. Clarke. Satisfiability modulo ODEs. In FMCAD, pages
105–112, 2013.

15. C. Herde, A. Eggers, M. Fränzle, and T. Teige. Analysis of hybrid systems using
hysat. In ICONS, pages 196–201, 2008.

16. J. Kapinski, J. V. Deshmukh, S. Sankaranarayanan, and N. Arechiga. Simulation-
guided lyapunov analysis for hybrid dynamical systems. In HSCC’14, Berlin, Ger-
many, April 15-17, 2014, pages 133–142, 2014.

17. B. Liu, S. Kong, S. Gao, and E. Clarke. Parameter identification using delta-
decisions for biological hybrid systems. In CMSB, 2014.

Appendix

A1. How to Install

dReach is an open source project under GPL-3 license. We bundled dReal and
dReach together and host them at http://dreal.github.io. The BMC encoder
module is written in OCaml and uses Oasis and OCaml Batteries library. At the
release page2, we host pre-compiled static-binaries for Linux and OS X, which
do not require any compilation to use dReach in those platforms.

A2. Syntax Grammar of drh

drh := macro def ∗ variable decl+ mode def + initial cond goal+

macro decl := #define var (expr | formula)

variable decl := [l, u] var;

mode def := {mode id; invt : (formula;)+ flow : ode+ jump : jump+}
ode := d/dt[x]=exp

jump := formula ==> @n formula

initial cond := @mode id formula;

goal := @mode id formula;

Note that we use the standard definitions for formlua and expr here.

A3. An Example of Encoded SMT2 Formula

Example encoding The bounded reachability problem of a bouncing ball example
(when k = 3) is encoded into the following shortened SMT2 formula.

1 (set-logic QF_NRA_ODE)
2 (declare-fun x_0_0 () Real) ...
3 (declare-fun v_0_t () Real) ...
4 (declare-fun time_0 () Real) ...
5 (define-ode flow_1 ((= d/dt[x] v)
6 (= d/dt[v] (+ (- 0.0 9.8) (* -0.45 (ˆ v 2.0))))))
7 (define-ode flow_2 ((= d/dt[x] v)
8 (= d/dt[v] (+ (- 0.0 9.8) (* +0.45 (ˆ v 2.0))))))
9 (assert (<= 0.0 x_0_0)) ...

10 (assert (<= v_10_t 18.0))
11 (assert (<= 0.0 time_0))
12 (assert (and (and (= v_0_0 0.0) (>= x_0_0 5.0)) (= mode_0 1.0) (=
13 [x_0_t v_0_t] (integral 0. time_0 [x_0_0 v_0_0] flow_1)) (= mode_0
14 1.0) (forall_t 1.0 [0.0 time_0] (<= v_0_t 0.0)) (<= v_0_t 0.0) (<=
15 ...
16 x_9_t) (= [x_10_t v_10_t] (integral 0. time_10 [x_10_0 v_10_0]
17 flow_1)) (= mode_10 1.0) (forall_t 1.0 [0.0 time_10] (<= v_10_t 0.0))
18 (<= v_10_t 0.0) (<= v_10_0 0.0) (forall_t 1.0 [0.0 time_10] (>= x_10_t
19 0.0)) (>= x_10_t 0.0) (>= x_10_0 0.0) (= mode_10 1.0) (>= x_10_t
20 0.45))) (check-sat) (exit)

http://dreal.github.io

Benchmark #Mode #Depth #ODEs #Vars Delta Result Time(s) Trace

AF-GOOD 4 3 20 53 0.001 SAT 0.425 793K
AF-BAD 4 3 20 53 0.001 UNSAT 0.074 —
AF-TO1-GOOD 4 3 24 62 0.001 SAT 2.750 224K
AF-TO1-BAD 4 3 24 62 0.001 UNSAT 5.189 —
AF-TO2-GOOD 4 3 24 62 0.005 SAT 3.876 553K
AF-TO2-BAD 4 3 24 62 0.001 UNSAT 8.857 —
AF-TSO1-TSO2 4 3 24 62 0.001 UNSAT 0.027 —
AF8-K7 8 7 40 101 0.001 SAT 10.478 3.8M
AF8-K23 8 23 40 293 0.001 SAT 135.29 11M

EO-K2 3 2 18 48 0.01 SAT 3.144 1.9M
EO-K11 3 11 99 174 0.01 UNSAT 0.969 —

QUAD-K1 2 1 34 89 0.01 SAT 2.386 10M
QUAD-K2 2 2 34 125 0.01 SAT 4.971 13M
QUAD-K3 4 3 68 161 0.01 SAT 13.755 42M
QUAD-K3U 4 3 68 161 0.01 UNSAT 2.846 —

CT 2 2 10 41 0.005 SAT 345.84 3.1M
CT 2 2 10 41 0.002 SAT 362.84 3.1M

BB-K10 2 10 22 66 0.01 SAT 8.057 123K
BB-K20 2 20 42 126 0.01 SAT 39.196 171K

Table 1: Summary of the running time of the tool on various hybrid system models:
#Mode = Number of modes in the hybrid system, #Depth = Unrolling depth, #ODEs
= Number of ODEs in the unrolled formula, #Vars = Number of variables in the un-
rolled formula, Result = Bounded Model Checking Result (delta-SAT/UNSAT) Time
= CPU time (s), Trace = Size of the ODE trajectory, AF = Atrial Filbrillation, EO =
Electronic Oscillator, QUAD = Quadcopter Control, CT = Cancer Treatment, BB =
Bouncing Ball with Drag.

A4. Experiments

All benchmarks and data shown here are also available on the tool website3. Due to
space limit, we only highlight the typical nonlinear differential equations in the models.
All models are hybrid systems with multiple modes containing these equations All
experiments were conducted on a machine with a 3.4GHz octa-core Intel Core i7-2600
processor and 16GB RAM, running 64-bit Ubuntu 12.04LTS. Table 1 is a summary of
the running time of the tool on various hybrid system models.

Atrial Fibrillation. We studied the Atrial Fibrillation model. The model has four
discrete control locations, four state variables, and nonlinear ODEs. A typical set of

2 http://dreal.github.io/download
3 http://dreal.github.io

http://dreal.github.io/download
http://dreal.github.io

ODEs in the model is:

du

dt
= e+ (u− θv)(uu − u)vgfi + wsgsi − gso(u)

ds

dt
=

gs2
(1 + exp(−2k(u− us))) − gs2s

dv

dt
= −g+v · v

dw

dt
= −g+w · w

The exponential term on the right-hand side of the ODE is the sigmoid function, which
often appears in modelling biological switches.

Prostate Cancer Treatment. The Prostate Cancer Treatment model [17] exhibits
more nonlinear ODEs. The reachability questions are

dx

dt
= (αx(k1 + (1− k1)

z

z + k2
− βx((1− k3)

z

z + k4
+ k3))−m1(1− z

z0
))x+ c1x

dy

dt
= m1(1− z

z0
)x+ (αy(1− d z

z0
)− βy)y + c2y

dz

dt
=
−z
τ

+ c3z

dv

dt
= (αx(k1 + (1− k1)

z

z + k2
− βx(k3 + (1− k3)

z

z + k4
))

−m1(1− z

z0
))x+ c1x+m1(1− z

z0
)x+ (αy(1− d z

z0
)− βy)y + c2y

Electronic Oscillator. The EO model represents an electronic oscillator model that
contains nonlinear ODEs such as the following:

dx

dt
= −ax · sin(ω1 · τ)

dy

dt
= −ay · sin((ω1 + c1) · τ) · sin(ω2) · 2

dz

dt
= −az · sin((ω2 + c2) · τ) · cos(ω1) · 2

ω1

dt
= −c3 · ω1

ω2

dt
= −c4 · ω2

dτ

dt
= 1

Quadcopter Control. We developed a model that contains the full dynamics of a
quadcopter. We use the model to solve control problems by answering reachability

questions. A typical set of the differential equations are the following:

dωx
dt

= L · k · (ω2
1 − ω2

3)(1/Ixx)− (Iyy − Izz)ωyωz/Ixx
dωy
dt

= L · k · (ω2
2 − ω2

4)(1/Iyy)− (Izz − Ixx)ωxωz/Iyy

dωz
dt

= b · (ω2
1 − ω2

2 + ω2
3 − ω2

4)(1/Izz)− (Ixx − Iyy)ωxωy/Izz

dφ

dt
= ωx +

sin (φ) sin (θ)(
sin(φ)2 cos(θ)

cos(φ)
+ cos (φ) cos (θ)

)
cos (φ)

ωy +
sin (θ)

sin(φ)2 cos(θ)
cos(φ)

+ cos (φ) cos (θ)
ωz

dθ

dt
= −(

sin (φ)2 cos (θ)(
sin(φ)2 cos(θ)

cos(φ)
ωy + cos (φ) cos (θ)

)
cos (φ)2

+
1

cos (φ)
)ωy

− sin (φ) cos (θ)(
sin(φ)2 cos(θ)

cos(φ)
+ cos (φ) cos (θ)

)
cos (φ)

ωz

dψ

dt
=

sin (φ)(
sin(φ)2 cos(θ)

cos(φ)
+ cos (φ) cos (θ)

)
cos (φ)

ωy +
1

sin(φ)2 cos(θ)
cos(φ)

+ cos (φ) cos (θ)
ωz

dxp

dt
= (1/m)(sin(θ) sin(ψ)k(ω2

1 + ω2
2 + ω2

3 + ω2
4)− k · d · xp)

dyp

dt
= (1/m)(− cos(ψ) sin(θ)k(ω2

1 + ω2
2 + ω2

3 + ω2
4)− k · d · yp)

dzp

dt
= (1/m)(−g − cos(θ)k(ω2

1 + ω2
2 + ω2

3 + ω2
4)− k · d · zp

dx

dt
= xp,

dy

dt
= yp,

dz

dt
= zp

A5. Bounded δ-reachability

Let H = 〈X,Q, flow, jump, inv, init〉 be a hybrid system as standardly defined. We use
first-order formulae over the real numbers to represent H, by writing

H = 〈X,Q,ϕflow, ϕjump, ϕinv, ϕinit〉

where ϕflow, ϕjump, ϕinv and ϕinit are logic formulae that define the corresponding pred-
icates in the standard definition. Now, let δ ∈ Q+ be a chosen error bound, we define
the δ-perturbation of H to be

Hδ = 〈X,Q,ϕδflow, ϕ
δ
jump, ϕ

δ
inv, ϕ

δ
init〉.

Here, ϕδ is a syntactic variant of ϕ which relaxes the numerical terms in ϕ up to an
error bound δ. The notion is formally defined in our recent work [10,11]. We now define
the bounded δ-reachability problem that dReach solves.

Let n ∈ N be a bound and T ∈ R+ be an upper bound of time duration. We write
unsafe to denote a subset of the state space of H defined by a first-order formula. The
bounded δ-reachability problem asks for one of the following answers

– H cannot reach unsafe in n steps within time T .
– Hδ can reach unsafeδ in n steps within time T .

Note that these answers are not weaker than the precise ones. When safe is the answer,
we know for certain that H does not reach the unsafe region; when δ-unsafe is the
answer, there exists some δ-bounded perturbation in the system that would render it
unsafe. Note that the error-bound δ can be chosen to be arbitrarily small, so that the
δ-unsafe answer discovers robustness problem in the system, which should be regarded
as unsafe indeed.

	dReach: -Reachability Analysis for Hybrid Systems
	Introduction
	System Description
	Logical Encoding of Reachability
	Using dReach
	Input Format
	Command Line Options

