
Floating-point Bugs in Embedded GNU C Library

Soonho Kong, Sicun Gao, and Edmund M. Clarke

Carnegie Mellon University, Pittsburgh, PA 15213

Abstract. We report serious bugs in floating-point computations for
evaluating elementary functions in the Embedded GNU C Library. For
instance, the sine function can return values larger than 1053 in certain
rounding modes. Further investigation also exposed faulty implementa-
tions in the most recent version of the library, which seemingly fixed
some bugs, but only by discarding user-specified rounding-mode require-
ments. We discuss our experience in how these bugs were spotted and
how they affected the implementation process of our SMT solver dReal.

1 Introduction

We have found floating-point bugs in Linux systems using Embedded GLIBC
(EGLIBC) version 2.16 or older. EGLIBC is a variant of the GNU C Library
(GLIBC) which is used as the default implementation in many distributions
including Debian, Ubuntu, and their variants.

The following C program computes the value of sin(−2.437592) in double-
precision after setting the rounding direction to upward (+∞).

1 #include <math.h>

2 #include <fenv.h>

3 #include <stdio.h>

4

5 int main() {

6 double x = -2.437592;

7 fesetround(FE_UPWARD);

8 printf("sin(%f)=%f\n", x, sin(x));

9 return 0;

10 }

The IEEE754 standard [3] does not specify correct rounding methods on el-
ementary functions such as the exponential, logarithm, and trigonometric func-
tions. Programmers and engineers usually expect the program to print out an
approximated value around sin(−2.437592) ' −0.64727239229 with an “accept-
able” amount of error. However, they all should agree that the result be in the
range between −1.0 and 1.0, even in the worst case.

However, a surprising result appears if we compile and execute the program
in a machine running Ubuntu 12.04 LTS (or any system with EGLIBC-2.15).

The output is greater than 1053 and it should not be a return value of sine
function in any sense.

$ gcc exp_bug.c -lm && ./a.out

sin(-2.437592)=191561981424936943059347927032148030287313979209416704.00

Here is another C program computing cosh(3.113408) with directed rounding
toward +∞. This example is more interesting because it shows different results
on Intel and AMD machines, and both of the results have serious problems.

1 #include <math.h>

2 #include <fenv.h>

3 #include <stdio.h>

4

5 int main() {

6 double x = 3.113408;

7 fesetround(FE_UPWARD);

8 printf("cosh(%f) = %f\n", x, cosh(x));

9 return 0;

10 }

In a machine with Intel Core i7 CPU, the program outputs inf while a
machine with AMD Opteron processor produces −160.191709.

[INTEL] $ gcc cosh_bug.c -lm && ./a.out

cosh(3.113408) = inf

[AMD] $ gcc cosh_bug.c -lm && ./a.out

cosh(3.113408) = -160.191709

Note that cosh(3.113408) ' 11.2710174432 and both results inf and−160.191709
are simply wrong. Moreover, each of the wrong results has significant implica-
tions:

– Intel (inf): It has a contagious effect in subsequent computations. inf is
a special value in the IEEE754 standard which indicates an overflow in a
computation. If one of subexpressions is evaluated to inf, then in general the
main expression also becomes infinity (+∞ or −∞) or NaN (Not a Number).

– AMD (−160.191709): Mathematically, cosh(x) is greater than or equal to
1 for all x ∈ R. As a result, programmers and engineers write algorithms
based on the invariant ∀x. 1 ≤ cosh(x). This result, −160.191709, breaks the
invariant and could cause an unexpected behavior.

2 Floating-point Bugs in EGLIBC (Ver. 2.16 or Older)

We have tested the implementations of the following math functions in C stan-
dard library:

Table 1. Experiment Setup

Function Domain Range Function Domain Range

sin [−10306, 10306] [−1.0, 1.0] acos [−1.0, 1.0] [−∞,+∞]
cos [−10306, 10306] [−1.0, 1.0] asin [−1.0, 1.0] [−∞,+∞]
tan [−10306, 10306] [−∞,+∞] atan [−1.0, 1.0] [−∞,+∞]
cosh [−500, 500] [1.0,+∞] exp [−100, 100] [0.0,+∞]
sinh [−500, 500] [−∞,+∞] log [10−306, 10306] [−∞,+∞]
tanh [−100, 100] [−1.0, 1.0] log10 [10−306, 10306] [−∞,+∞]
sqrt [0.0, 10306] [0.0,+∞]

sin, cos, tan, acos, asin, atan, cosh, sinh, tanh, exp, log, log10, sqrt.

For each function f , we take 100, 000 random numbers from a subset of
function f ’s domain. Table 1 shows each function’s sampling domain and range.
We pick the sampling domain carefully so that the result of the computations
can be fit in a double-precision variable. We consider the four rounding modes
supported by C99 standard [4]:

· (nearest), →0 (toward zero), ↑ (toward +∞), ↓ (toward −∞).

For each sample x and for each rounding mode rnd, we compute two values
f rndC (x) and f rndMPFR(x) where fC is a function f in C standard library and fMPFR

is a function f in the GNU MPFR library. MPFR supports arbitrary-precision
floating-point computation and we use it as a reference implementation to have
a comparison. The correctness of MPFR is, of course, another issue and we do
not discuss it here. In the experiments, we use 256-bit precision for MPFR.

We have the following expectations for the two values:

– Consistency: The difference between f rndC (x) and f rndMPFR(x) should not be
too large. In this experiment, we set the threshold as 220 ULP (Unit of Least
Precision) which is the spacing between two adjacent floating-point numbers.
Note that IEEE754 double-precision format has 53 bits of precision and 220

ULP implies that it loses 20-bit precision out of 53. If |f rndC (x)−f rndMPFR(x)| >
220ULP, we label the case as “inconsistent”.

– Correctness: The value of f rndC (x) should be in the range of the mathematical
function f . For instance, sinrnd

C (x) has to be between -1.0 and 1.0 no matter
how imprecise it is.

We run the experiments1 on two machines – one with Intel Core i7-2600
CPU (8-core, 3.40GHz) and another with AMD Opteron Processor 6134 (32-
core, 2.30GHz). Both of them are running Ubuntu 12.04 LTS in which uses
EGLIBC-2.15 for the C standard library implementation. We use MPFR-3.1.1
and g++-4.8.1 C++ compiler in the experiments.

The experimental results are summarized in table 2.

1 Source code is available at https://github.com/soonhokong/fp-test

Table 2. Experimental results on Intel and AMD machines: f↑, f↓, and f→0 indicate
a function f with rounding mode toward +∞, toward −∞, and toward 0 respectively.
“Inconsistent” denotes the number of cases in which the difference of two results are
larger than 220 ULP (Unit of Least Precision). “Incorrect” denotes the number of cases
in which fC(x) is out of f ’s mathematical range. “±∞” denotes the number of cases in
which fC(x) is either −∞ or +∞.

Function
Intel AMD

Inconsistent Incorrect ±∞ Total Inconsistent Incorrect ±∞ Total

sin↑ 10055 446 0 10501 9853 450 0 10303

sin↓ 9619 497 0 10116 10009 450 0 10459
sin→0 10087 436 0 10523 9904 423 0 10327

cos↑ 10097 434 0 10531 9880 423 0 10303

cos↓ 9815 442 0 10257 9910 461 0 10371
cos→0 9737 444 0 10181 9913 441 0 10354

tan↑ 12218 0 0 12218 12452 0 0 12452

tan↓ 12387 0 0 12387 12378 0 0 12378
tan→0 12486 0 0 12486 12506 0 0 12506

cosh↑ 18768 30139 935 49842 37091 12295 291 49677

cosh↓ 49766 0 0 49766 49673 0 0 49673
cosh→0 49713 0 0 49713 49772 0 0 49772

sinh↑ 47807 0 0 47807 47451 0 266 47717

sinh↓ 47493 0 0 47493 47676 0 0 47676
sinh→0 47911 0 0 47911 48046 0 0 48046

tanh↑ 3107 0 0 3107 3242 0 0 3242

tanh↓ 3135 0 0 3135 3268 0 0 3268

exp↑ 47386 2536 0 49922 37883 11708 124 49715

exp↓ 49646 0 0 49646 49978 0 0 49978
exp→0 50022 0 0 50022 49836 0 0 49836

1. The implementations of sin, cos, tan, cosh, sinh, tanh and exp functions
have severe problems when they are used with the non-default rounding
modes (toward ∞, toward −∞, and toward 0). It is also not rare to have
the problematic cases in practice. For example, cosh↑ function gives wrong
results almost 50% of cases (49,842 out of 100,000).

2. We have not observed any problem under the default rounding mode (toward
nearest representable number). Also the implementations of acos, asin, atan,
tanh, log, log10, and sqrt functions pass our tests.

3 Fix in EGLIBC-2.17 and Remaining Problems

In EGLIBC-2.17, they provided a patch for the problem. The following is a part
of the new implementation of sine function (IEEE754 double-precision)2:

2 Available at http://www.eglibc.org/cgi-bin/viewvc.cgi/branches/eglibc-2_

17/libc/sysdeps/ieee754/dbl-64/s_sin.c?view=markup

http://www.eglibc.org/cgi-bin/viewvc.cgi/branches/eglibc-2_17/libc/sysdeps/ieee754/dbl-64/s_sin.c?view=markup
http://www.eglibc.org/cgi-bin/viewvc.cgi/branches/eglibc-2_17/libc/sysdeps/ieee754/dbl-64/s_sin.c?view=markup

eglibc-2.17/libc/sysdeps/ieee754/dbl-64/s sin.c
101 __sin(double x){
102 double xx,res,t,cor,y,s,c,sn,ssn,cs,ccs,xn,a,da,db,eps,xn1,xn2;

103 #if 0

104 double w[2];

105 #endif

106 mynumber u,v;

107 int4 k,m,n;

108 #if 0

109 int4 nn;

110 #endif

111 double retval = 0;

112

113 SET_RESTORE_ROUND_53BIT (FE_TONEAREST);

We find that the patch does not really fix the problem. At line 113, it resets
the rounding mode to “round to nearest” and compute the value of sin(x) while
ignoring the user-specified rounding mode. We found a case in which the value
of sin↑C(x) is smaller than the value of sin·MPFR(x), which violates the semantics
of “toward +∞” rounding mode:

sin↑C(−3.93799) = 0.714841448083829766879659928236

sin·MPFR(−3.93799) = 0.714841448083829771665831705916

4 Our Experience with the Bugs

We found the bugs in the Embedded GNU C Library while investigating a prob-
lem in our SMT solver, dReal [1]. dReal implements a δ-complete decision pro-
cedure for nonlinear arithmetic, and should never return an unsat answer on a
satisfiable formula. However, we obtained wrong answers on several simple sat-
isfiable formulas. During debugging, we concluded that the only place that can
go wrong is with interval computation in the ICP (Interval Constraint Propa-
gation) engine, Realpaver [2]. Realpaver uses the C standard library functions
to change rounding modes and perform interval computations. For instance, the
following is the interval implementation of sinh function in realpaver-1.0.

realpaver-1.0/src/rp interval.c
void rp_interval_sinh(rp_interval result, rp_interval i)

{

RP_ROUND_DOWNWARD();

rp_binf(result) = sinh(rp_binf(i));

RP_ROUND_UPWARD();

rp_bsup(result) = sinh(rp_bsup(i));

}

For an input interval i = [l, u], this implementation computes result =
[sinh↓(l), sinh↑(u)] using math functions in C standard library. Combined with

the problem of eglibc-2.16, this implementation caused unexpected behav-
iors when the program is executed in machines running latest Ubuntu/Debian
OS. To fix the problem, we change the interval computation in Realpaver using
FILIB++ [5], a more reliable interval computation library. However, we remark
that unless a floating point library is completely verified, there is always the
possibility for obtaining wrong answers. The user should always require dReal
to produce a proof of unsatisfiability for unsat answers, and validate it using the
proof checker [1].

5 Conclusion

We report serious bugs in floating-point computations for evaluating elementary
functions in the Embedded GNU C Library. It is not a negligible numerical error
but either a significant error (220 ULP) or mathematically incorrect result (i.e.
sin(x) > 1053) which can trigger severe problems in the following computations.
Moreover, the chances of having these results are not rare at all as we have shown
in section 2. The current fix does not mitigate the problem but hides it.

References

1. Sicun Gao, Soonho Kong, and Edmund M. Clarke. dreal: An smt solver for nonlinear
theories over the reals. In Maria Paola Bonacina, editor, CADE, volume 7898 of
Lecture Notes in Computer Science, pages 208–214. Springer, 2013.

2. Laurent Granvilliers and Frédéric Benhamou. Algorithm 852: Realpaver: An in-
terval solver using constraint satisfaction techniques. ACM Trans. Math. Softw.,
32(1):138–156, March 2006.

3. IEEE Task P754. ANSI/IEEE 754-1985, Standard for Binary Floating-Point Arith-
metic. August 1985.

4. ISO. ISO/IEC 9899:2011 Information technology — Programming languages —
C. International Organization for Standardization, Geneva, Switzerland, December
2011.

5. Michael Lerch, German Tischler, Jürgen Wolff Von Gudenberg, Werner Hofschus-
ter, and Walter Krämer. Filib++, a fast interval library supporting containment
computations. ACM Trans. Math. Softw., 32(2):299–324, June 2006.

	Floating-point Bugs in Embedded GNU C Library

