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Abstract—We present SMT-based techniques for analyzing
networks of nonlinear hybrid systems, which interact with each
other in both discrete and continuous ways. We propose a
modular encoding method to reduce reachability problems of
hybrid components, involving continuous I/O as well as usual
discrete I/O, into the satisfiability of first-order logic formulas
over the real numbers. We identify a generic class of logical
formulas to modularly encode networks of hybrid systems, and
present an SMT algorithm for checking the satisfiability of
such logical formulas. The experimental results show that our
techniques significantly increase the performance of SMT-based
analysis for networks of nonlinear hybrid components.

I. INTRODUCTION

Formal analysis of hybrid systems can be reduced to the
satisfiability of SMT formulas over the real numbers. This
approach can combine state-of-the-art SMT techniques with
numerical methods to analyze continuous dynamics, governed
by ordinary differential equations (ODEs). The satisfiability of
these formulas are in general undecidable for nonlinear hybrid
systems, but important advances have been made by various
approaches, e.g., [1]–[6].

In principle, these methods can deal with networks of
nonlinear hybrid systems by combining the SMT encodings of
all components. Following SMT-based approaches for digital
systems, discrete communication between components, such
as synchronization or message passing, can be encoded using
first-order variables that commonly occur in the encodings of
several components. In order for this technique to work, all
interactions between components must be discrete.

However, many networks of hybrid systems also include
continuous interaction as well as discrete communication. For
example, consider the problem of controlling the temperature
of several adjacent rooms. The temperature of one room can
continuously affect the temperature of all adjacent rooms. If
we model this system as a network of several thermostat
systems, it is quite clear that such continuous interactions
cannot be captured only using discrete communication. This
kind of continuous I/O is common in control systems that
are composed of mechanically connected components; e.g,
cars [7], airplanes [8], plants [9], etc. Indeed, formal models of
hybrid systems, such as hybrid automata [10] and hybrid I/O
automata [11], can precisely specify continuous interactions.
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The analysis of networks of nonlinear hybrid systems has
not been studied much in existing SMT-based approaches.
To apply existing SMT algorithms, one may define a sound
discrete approximation of continuous I/O. But this is very
difficult for nonlinear systems because continuous I/O can
involve nonlinear functions, not just single values. Or one can
build a single hybrid component that is equivalent to the entire
network, but at the cost of the state explosion problem.

The goal of this paper is to provide an SMT technique
to analyze networks of nonlinear hybrid systems involving
continuous I/O as well as discrete I/O. The contribution of
this paper is twofold: (1) to directly provide a new modular
SMT encoding for networks of nonlinear hybrid systems with
continuous I/O, and (2) to develop an SMT solving algorithm
to check the satisfiability of such logical formulas.

The basic idea is to encode continuous interaction by means
of uninterpreted real functions, not first-order variables. We
then use universally quantified equalities over time to encode
a continuous synchronization of uninterpreted real functions.
To logically decompose continuous I/O expressed as systems
of ODEs, we make use of parameterized integration operators.
We identify a syntactic subclass of formulas that is expressive
enough to modularly encode continuous I/O.

We present a novel SMT algorithm to check the satisfiability
of the proposed class of formulas. Existing algorithms cannot
deal with uninterpreted real functions, universally quantified
equalities, and parameterized integration operators at the same
time. Our algorithm is based on an equisatisfiable process
that removes uninterpreted real functions and parameterized
integration operators. This process can easily be combined
with existing DPLL(T )-based algorithms with minimal cost.

We have implemented our algorithm in the dReal solver
[12], and performed experiments on a range of nontrivial
networks of nonlinear hybrid systems. These case studies
include both discrete and continuous interactions between
hybrid components. The experimental results show that our
techniques can greatly increase the performance of SMT-based
analysis for networks of general nonlinear hybrid systems.

The paper is organized as follows. Section II explains
networks of hybrid systems. Section III proposes a modular
encoding. Section IV presents an SMT solving algorithm.
Section V provides an overview of the case studies. Section VI
presents the experimental results. Section VII discusses related
work, and Section VIII presents concluding remarks.



II. NETWORK OF HYBRID SYSTEM COMPONENTS

We consider a network of hybrid systems that interact with
each other in discrete or continuous ways. As shown in Fig. 1,
each component has two types of input and output; continuous
I/O (denoted by bold lines) and discrete I/O (denoted by thin
lines). A hybrid system can be specified by hybrid automata
[10]. This paper uses an extended version of hybrid automata
with explicit I/O, similar to one presented in [11].

A. Hybrid I/O Automata

In hybrid I/O automata, discrete states are given by a finite
set of modes Q, and continuous states are specified by using
a finite set of real-valued variables X = {x1, . . . , xl}. A
combined state is then a pair 〈q,v〉 of a mode q ∈ Q and
a vector v = (v1, . . . , vl) ∈ Rl of real numbers. Given
a (possibly infinite) set of actions Σ, a discrete transition
between two states 〈q,v〉 a−→ 〈q′,v′〉, identified with an action
a ∈ Σ, is specified by a jump condition jumpq,q′(v, a,v

′).
Each mode q ∈ Q of a hybrid I/O automaton defines

extra conditions to specify the continuous behavior of the
variables X in the mode q. An invariant condition invq
defines all possible values of the variables X in mode q.
A flow condition flowq defines trajectories of the variables
X—describing continuous changes of X’s values over time—
in mode q, typically using ordinary differential equations
(ODEs). An initial condition initq defines a set of initial states.

Discrete input and output of a component are identified by
using disjoint sets of input actions ΣI ⊆ Σ and output actions
ΣO ⊆ Σ. Other “local” actions in Σ \ (ΣI ∪ ΣO) are called
internal actions. Likewise, continuous input and output are
identified by using disjoint sets of input variables XI ⊆ X
and output variables XO ⊆ X , and other “local” variables in
X \ (XI ∪XO) are called internal variables.

Definition 1. A hybrid I/O automaton (HIOA) is defined as
a tuple H = (Q,X,Σ, {invq}q∈Q, {flowq}q∈Q, {initq}q∈Q,
{jumpq,q′}q,q′∈Q, (XI , XY ), (ΣI ,ΣO)).

The init , inv , and jump conditions are often written as
predicates initq(x), invq(x), and jumpq,q′(x, a,x

′) over the
variables X . The flow condition is written as a system of
ODEs of the form dx

dt = f(x, ι)(t), where the input variables
ι in XI appear as free variables in the ODEs.

A network of hybrid system components is specified by a
parallel composition H = H1 ‖ H2 ‖ · · · ‖ Hn of hybrid I/O
automata. A communication between components is specified
using I/O actions and variables. We assume that: (i) output
actions and variables of one component are not output of any
other components, and (ii) internal actions and variables of
one component are not parts of any other components.

There are two types of communications in a network H.
Consider a source component Ho and target components
Hi1 , . . . ,Him . A discrete communication is modeled by joint
synchronous actions in ΣoO∩Σi1I ∩· · ·∩ΣimI that are output of
the source and input of the targets. A continuous interaction
is modeled by shared variables in Xo

O ∩X
i1
I ∩ · · · ∩X

im
I that

are output of the source and input of the targets.
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Fig. 1. Controllers for turning an airplane

A discrete state of a network H is defined as a vector
(q1, . . . , qn) of modes of its components. Components in H
synchronize their discrete transitions with a joint action. When
one component performs a transition labeled with an action
a, every component that includes the action a must perform a
transition with the same action. A component can individually
perform a discrete transition with an internal action.

A continuous state of a network H is defined as trajectories
of the variables X1 ∪ · · · ∪Xn of its components. The values
of H’s variables evolve simultaneously over time according
to their flow and invariant conditions. Flow conditions of
an input variable are given by those of its connected output
variable. That is, an output variable and its corresponding input
variables must have the same value at all times.

Consequently, a network of HIOA is semantically equivalent
to a single HIOA (see [11] for a formal definition).

B. Example: Turning an Airplane

We consider a networked controller for turning an airplane,
adapted from [8], [13]. An aircraft makes a turn by controlling
two ailerons (surfaces attached to the end of the wings) and a
rudder (a surface attached to the vertical tail). As depicted in
Fig. 1, the main controller orchestrates the subcontrollers for
the ailerons and the rudder to achieve a coordinated turn. The
entire system is Hmain ‖ Hleft ‖ Hrudder ‖ Hright ‖ Hair .

A subcontroller HM for M ∈ {left , right , rudder} has
three modes acc, dec, and con . Its angle δM and the moving
rate rM changes according to the ODEs with constant cM > 0:

δ̇M = rM ,

ṙM = cM (acc), ṙM = −cM (dec), ṙM = 0 (con).

HM performs a jump transition with an input action gM (v)
to determine a next mode based on the goal angle v. The sets
of I/O variables and I/O actions are defined by: XM

O = {δM},
ΣMI = {gM (v) | v ∈ R}, and XM

I = ΣMO = ∅.
The lateral dynamics of the aircraft is modeled by Hair that

has a single mode with the nonlinear ODEs:

β̇ = Y (β, δ)/mV − r + V cosβ sinφ/g, ψ̇ = g/V · tanφ,

ṗ = (c1r + c2p)r tanφ+ c3L(β, δ) + c4N(β, δ), φ̇ = p,

ṙ = (c8p− c2r)r tanφ+ c4L(β, δ) + c9N(β, δ)

with β the yaw angle, ψ the direction, p the rolling moment,
φ the roll angle, and r the yawing moment. Y , L, and N are
linear functions of β and angles δ = (δleft , δright , δrudder ).
The sets of I/O variables and I/O actions are defined by:
Xair
I = {δ}, Σair

O = Σmain
I , and Xair

O = Σair
I = ∅.



The main controller Hmain provides a goal angle to a
subcontroller M using a discrete transition with an output
action gM , and monitors the current position from Hair using
a discrete transition with an input action read . The component
Hmain has no I/O variables, but has the sets of I/O actions:

Σmain
I = {read(vψ, vφ, vβ) | vψ, vφ, vβ ∈ R}

Σmain
O = Σleft

I ∪ Σright
I ∪ Σrudder

I

We are interested in a reachability problem to find outputs of
Hmain to reach a goal direction in a reasonable time, while
keeping the yaw angle β close to 0 during the turn.

The continuous interaction between (Hleft , Hrudder , Hright)
and Hair cannot be specified using discrete synchronization
without I/O variables. We can eliminate I/O variables by
building a single HIOA that is equivalent to the composition
of the network, but at the cost of the state explosion problem.
For example, a single hybrid automaton for H1 ‖ . . . ‖ Hn

has total
∏n
i=1mi modes, if each Hi has mi modes.

III. SMT ENCODING OF HYBRID COMPONENTS

In this section we propose a modular method to encode
a network of hybrid system components that involve both
discrete and continuous I/O at the same time. Our technique
generalizes previous SMT-based approaches that only focus
on discrete communication using synchronous actions.

A. Encoding of Discrete Transitions

We use first-order logic formulas over the real numbers,
called LRF -formulas, along with a collection F of Type 2
computable real functions [3]. A Type 2 computable real
function can be numerically evaluated up to an arbitrary
precision, such as polynomials, exponentiation, trigonometric
functions, and solutions of Lipschitz-continuous ODEs. The
syntax is defined in the standard way, with c real number
constants, y first-order variables, and f real functions in F :

t ::= c | y | f(t1, . . . , tn)

ϕ ::= t > 0 | ϕ1 ∧ ϕ2 | ¬ϕ | ∃y.ϕ | ∀y.ϕ.

Consider a HIOA H . As usual, a discrete transition of H
with an action can simply be encoded by using a first-order
variable w that denotes the action. Discrete synchronization
by the action is encoded by using the same variable w in the
formula for each corresponding component.

Definition 2. An LRF -encoding for a (synchronized) discrete
transition of H from state 〈q,y〉 to 〈q′,y′〉 by an action w is:

dt(q,y, w, q′,y′) ≡ (w ∈ Σ → jumpHq,q′(y, w,y
′))

∧ (w 6∈ Σ → q = q′ ∧ y = y′).

B. Encoding of Continuous Flows

The continuous behavior of one component is parameterized
by the trajectories of its input variables, which are composed
of the trajectories of the corresponding output variables in
other components. Unlike actions, these (potentially nonlinear)
trajectories cannot be encoded as first-order variables in LRF ,
because they are actually real-valued functions.

We use an uninterpreted real function symbol R → R to
represent a trajectory for each input variable. Consider a flow
condition for mode q, expressed as a system of ODEs:[

dx
dt = fq(x,o, ι)(t), do

dt = gq(x,o, ι)(t)
]

with x the internal variables, o the output variables, and ι
the input variables. Mathematically, these ODE variables in
the terms fq(x,o, ι)(t) and gq(x,o, ι)(t) denote unary real
functions R→ R over time t.

Given function symbols ȯ1, . . . , ȯl to denote the derivatives
of o = (o1, . . . , ol), and function symbols ẋ1, . . . , ẋn to
denote the derivatives of x = (x1, . . . , xn), we can express
the trajectories of x and o as the LRF -formula

∀u ∈ [0, t]. [ẋ, ȯ](u) = [fq(x,o, ι)(u), gq(x,o, ι)(u)].

The trajectories of the input variables ι (that appear as free
variables in fq and gq) are then defined by using output
derivatives of other components.

Using these I/O derivative symbols, we can express the
continuous change of H’s states from initial values y0 to new
values yt for duration t as the LRF -formula:

yt = y0 +
∫ t
0
[ẋ, ȯ, ι̇] ds

This LRF -formula is parameterized by the internal derivatives
ẋ = (ẋ1, . . . , ẋn), the output derivatives ȯ = (ȯ1, . . . , ȯl), and
the input derivatives ι̇ = (ι̇1, . . . , ι̇m).

The ODE solution term y0+
∫ t
0
[ẋ, ȯ, ι̇] ds can be considered

as a computable real function F (y0, t) in the collection F ,
provided that fq , gq , and the ODEs for the input variables
are all Lipschitz-continuous [14], [15]. The extra derivative
function symbols are also in the collection F . In sum, an
encoding of continuous flows is defined as follows:

Definition 3. An LRF -encoding for a continuous flow of H
from y0 to yt in mode q for duration t, that involves I/O
variables (ι,o) and satisfies the invariant condition invHq ,
where F (y0, t) denotes y0 +

∫ t
0
[ẋ, ȯ, ι̇] ds, is:

ct(q,y0,yt, t | ι,o,x) ≡ yt = F (y0, t)

∧ ∀u ∈ [0, t]. [ẋ, ȯ](u) = [fq, gq](u)

∧ ∀u ∈ [0, t]. invHq (F (y0, u)).

We use different uninterpreted functions for variables in
different components, even if they are “shared” variables
in a network of HIOA. The use of the same uninterpreted
functions for different components may cause unintended
semantic effects, as explained in Sec. IV-A below. This is not a
strict restriction, because we can always use “syntactic copies”
to enforce that input variables ι and output variables o follow
the isomorphic system of ODEs f up to renaming, by means
of connection formulas between ι and o as follows.

Definition 4. An LRF -encoding of connections between input
variables ι and output variables o is as follows (it includes
internal variables x and x′, since o may depend on x):

conn(ι,o,x,x′) ≡ (∀u ∈ [0, t]. [ȯ, ẋ](u) = f(ȯ,x)(u))

↔ (∀u ∈ [0, t]. [ι̇, ẋ′](u) = f(ι̇,x′)(u)).



C. Encoding of Bounded Reachability
For a network of HIOA H1 ‖ · · · ‖ HN , the reachability

up to the k-th discrete step—that involves continuous I/O as
well as discrete synchronization—can be encoded in LRF as
follows. This formula is defined as just a conjunction of N
subformulas, each of which encodes the reachability of each
individual component Hj up to the k-th discrete step.

Definition 5. An LRF -encoding for the k-step reachability of
a network of HIOA H1 ‖· · ·‖ HN is the LRF -formula of size
O(
∑N
j=1 k · |Qj |2) (∃-quantified at the top):

N∧
j=1


initj

m
j
0

(yj
0
0) ∧ ct(mj

0,yj
0
0,yj

t
0, t0 | ι

j
0,o

j
0,x

j
0)

∧
∧k

i=1

[
dt(mj

i−1,yj
t
i−1, wi,m

j
i ,yj

0
i ) ∧

ct(mj
i ,yj

0
i ,yj

t
i, ti | ι

j
i ,o

j
i ,x

j
i )

]


∧ goal(m1
k, . . . ,m

N
k ,y1

t
k, . . . ,yN

t
k)

∧
∧k

i=0 conn(ι
1
i , . . . , ι

N
i ,o

1
i , . . . ,o

N
i ,x

1
i , . . . ,x

N
i )

For each i-th discrete step of duration ti, component Hj

is in mode mj
i , and the values of Hj’s variables begin with

yj
0
i and end with yjti. At the first step (i = 0), the initial

values yj00 of Hj’s variables satisfy the initial condition. To
begin the (i + 1)-th step, every component synchronizes its
transition with the same action wi. For the k-th step, the goal
formula holds for Hj’s final state. The connection formulas
conn link input and output variables.

D. Example
Consider the airplane controller example in Sec. II-B. For

a subcontroller M , an LRF -encoding of a continuous flow
from initial values (δ0M , r

0
M ) to new values (δtM , r

t
M ) with the

invariant condition −45 < δM < 45 is the formula below.
(δtM , r

t
M ) = (δ0M , r

0
M ) +

∫ t

0
[δ̇M , ṙM ] ds

∧

 (qM = acc → ∀u ∈ [0, t]. [δ̇M , ṙM ](u) = [rM , cM ]) ∧
(qM = dec → ∀u ∈ [0, t]. [δ̇M , ṙM ](u) = [rM ,−cM ]) ∧
(qM = con → ∀u ∈ [0, t]. [δ̇M , ṙM ](u) = [rM , 0])


∧ ∀u ∈ [0, t]. − 45 < π1

(
(δ0M , r

0
M ) +

∫ u

0
[δ̇M , ṙM ] ds

)
< 45.

The last line expresses the invariant condition −45 < δM < 45
using the solution term (δ0M , r

0
M ) +

∫ u
0

[δ̇M , ṙM ] ds and the
projection function π1(a, b) = a.

For the airplane component Hair , an LRF -encoding of its
continuous flow is simply the single ODE solution term:

(βt, ψt, φt, pt, rt, δt) = (β0, ψ0, φ0, p0, r0, δ0) +
∫ t
0
F (s) ds,

that is parameterized by the component Hair ’s input variables
δair = (δairleft , δ

air
right , δ

air
rudder ), where

F (s) =


Y (β, δair )/mV − r + V/g · cosβ sinφ
g/V · tanφ
p
(c1r + c2p)r tanφ+ c3L(β, δair ) + c4N(β, δair )
(c8p− c2r)r tanφ+ c4L(β, δair ) + c9N(β, δair )

δ̇air


The behavior of the input variables δair is given by connection
formulas such as: (∀u ∈ [0, t]. [δ̇M , ṙM ](u) = [rM , cM ]) ↔
(∀u ∈ [0, t]. [δ̇airM , ṙairM ](u) = [rairM , cM ]), where variable rairM
is a “copy” of the internal variable rM of M .

E. The Correctness of the Encoding

Our modular encoding is correct in the sense that it is
equisatisfiable to the encoding of the composition, which is
a single hybrid automaton (see [16] for the proof).

Theorem 1. Given a network of HIOAH = H1 ‖ · · · ‖ Hn, its
modular encoding (of size O(k

∑N
j=1 |Qj |2)) and the encoding

of its composition (of size O(k
∏N
j=1 |Qj |)) are equisatisfiable.

IV. SMT ALGORITHM FOR HYBRID COMPONENTS

We syntactically identify a generic class of LRF -formulas
that involve universal quantification for uninterpreted real
functions. This class includes LRF -formulas for networks of
hybrid I/O automata in Def. 5. We present an SMT procedure
for checking the satisfiability of these LRF -formulas. The
proofs of lemmas and theorems in this section are in [16].

A. Syntactic Classification

We explicitly decompose a collection F as F ′ ∪ G. A
collection G is composed of uninterpreted unary differentiable
functions R → R to denote variables x1, . . . , xl in ODEs
and their derivatives ẋ1, . . . , ẋl (including I/O variables and
I/O derivatives), whereas F ′ includes only interpreted real
functions. For each pair (x, ẋ) in G, the function ẋ ∈ G is
a derivative of the function x ∈ G.

We explicitly take into account parameterized integration
operators over ODE variables x ∈ G and derivatives ι̇ ∈ G:

y0 +

∫ t

0

[f(x, ι)(s), ι̇(s)] ds,

specifying solution functions of parameterized ODE systems
of the form d

ds [x, ι] = [f(x, ι)(s), ι̇(s)] with initial values y0

over time t. As mentioned, we can define the behavior of each
input derivative ι by universally quantified LRF′∪G -formulas
of the form ∀u ∈ [0, t]. ι̇(u) = g(z)(u), where z ∈ G denote
unary function symbols for ODE variables.

We identify a subclass of LRF′∪G -formulas that allows a
reduction to LRF′ without extra uninterpreted real functions in
G. We can apply any (existing) algorithms for LRF′ -formulas
after the reduction. As a matter of fact, the entire class
of LRF′∪G -formulas is too expressive to have any kinds of
efficient decision procedures. For example, control problems
of nonlinear systems are undecidable in general [17], but can
be written as LRF′∪G -formulas.1

We require that each uninterpreted function symbol in G
only occurs in a single integration term. Otherwise, a “shared”
function symbol in different terms leads to an unintended
semantic restriction that all the integration terms have the same
solution function. The decomposition using parameterized
integration in Sec. III-B is therefore no longer equisatisfiable
to the original formula. This is why we encode variables in
different components as different functions.

1Consider a nonlinear system ẋ = f(x,u) with initial values x0 and
controls u. The controllability to xt can be expressed as the satisfiability of
xt = x0 +

∫ t
0 f(x,u) ds with uninterpreted real functions u.



For example, consider the LRF′∪G -formula that involves the
ODE dx

ds = x with different initial values 1 and 2:

x1 = 1 +
∫ t
0
x(s) ds ∧ x2 = 2 +

∫ t
0
x(s) ds ∧ t = 1,

which is satisfiable with x1 = e and x2 = 2e. Now let us
replace the term x(s) with an uninterpreted function ẋ(s):

x1 = 1 +
∫ t
0
ẋ(s) ds ∧ x2 = 2 +

∫ t
0
ẋ(s) ds ∧ t = 1

∧ ∀u ∈ [0, t]. ẋ(u) = x(u).

This formula is not satisfiable, because there are no single
interpretations of ẋ and x that denote solution functions of
dx
ds = x for both initial values 1 and 2 at the same time.

We restrict our attention to G with the following constraints.
Every uninterpreted function x ∈ G that occurs in the same
integration term has the same domain [0, tx]. Each derivative
ẋ ∈ G is bounded by a finite set of Lipschitz-continuous
functions Gx = {g1(z), g2(z), . . . , gm(z)}. This boundedness
constraint for ẋ ∈ G can be expressed as the LRF′∪G -formula:
boundGx(ẋ) ≡

∨
g(z)∈Gx ∀u ∈ [0, tx]. ẋ(u) = g(z)(u).

Definition 6. An LRF′∪G -formula for networks of hybrid I/O
automata has the form: ∃y. ϕ ∧

∧
ẋ∈G boundGx(ẋ), where:

• each subformula of ϕ is quantifier-free or containing only
universally quantified subformulas over time;

• each uninterpreted function in G appears in integration
terms, universally quantified formulas over time of the
form ∀u ∈ [0, tx]. ẋ(u) = g(z)(u), or formulas of the
negated form ∃u ∈ [0, tx]. ẋ(u) 6= g(z)(u);

• each uninterpreted function in G appears in at most
one integration term (but the same integration term can
appear in a formula many times).

The formula in Def. 5 is in the syntactic class of Def. 6, if
every input variable corresponds to some output variable.

B. LRF′ -Reduction of LRF′∪G -Formulas

A key part of our algorithm is the LRF′ -reduction that
removes uninterpreted functions in G from LRF′∪G -formulas,
summarized in Alg. 1. For a conjunction µ of LRF′∪G -literals
that satisfy the boundedness constraint and the syntactic
restriction in Def. 6, the LRF′ -reduction procedure builds an
LRF′ -formula that is equisatisfiable to the conjunction µ.

Definition 7. An LRF′∪G -literal is an atomic LRF′ -formula, a
universally quantified formula ∀u ∈ [0, tx]. ẋ(u) = g(z)(u),
or a negation of these LRF′∪G -atoms.

Without loss of generality, we assume that for each derivative
ẋ ∈ G, the conjunction µ includes a universally quantified
LRF′∪G -literal of the form ∀u ∈ [0, tx]. ẋ(u) = g(z)(u) from
the boundedness constraint boundGx(ẋ).

The LRF′ -reduction begins with choosing a universally
quantified LRF′∪G -literal ∀u ∈ [0, tx]. ẋ(u) = g(z)(u) for
each derivative ẋ ∈ G (line 2). We replace every occurrence
of derivative ẋ in parameterized integration terms by the term
g(z)(u) (line 3). This procedure preserves the satisfiability of
the formula as stated in Lemma 1, since each uninterpreted
function in G appears in at most one integration term.

Algorithm 1: LRF′ -reduction for LRF′∪G -formulas.

Input: A conjunction µ = l1 ∧ · · · ∧ lm of LRF′∪G -literals
Output: An equisatisfiable LRF′ -formula

1 for each ẋ ∈ G inside µ’s integration terms do
2 pick a literal l = ∀u ∈ [0, tx]. ẋ(u) = g(z)(u) in µ;
3 replace each ẋ by g(z) in µ’s integration terms;
4 for each literal l′ in µ including ẋ other than l do
5 if l′ = ∀u ∈ [0, tx]. ẋ(u) = g′(z)(u) then
6 combine ∀u ∈ [0, tx]. g(z)(u) = g′(z)(u) with µ;
7 else
8 combine ∃u ∈ [0, tx]. g(z)(u) 6= g′(z)(u) with µ;
9 return µ;

Lemma 1. Given a conjunction µ of LRF′∪G -literals including
∀u ∈ [0, tx]. ẋ(u) = g(z)(u), the formula µ′ obtained from
µ by replacing each occurrence of ẋ in integration terms by
g(z) is equisatisfiable to the conjunction µ.

As a result, every parameterized integration term in the
conjunction µ becomes concrete solution LRF′ -term without
free ODE variables. That is, each integration term is now
considered as a computable real function in F ′.

We add extra constraints to ensure the consistency between
the chosen LRF′∪G -literals and the other LRF′∪G -literals in µ
(line 4). For each pair of LRF′∪G -literals in µ, we must ensure
that they are satisfiable at the same time. For example, we
need the constraint ∀u ∈ [0, tx]. g(z)(u) = g′(z)(u) for a
universally quantified literal ∀u ∈ [0, tx]. ẋ(u) = g′(z)(u) in
µ. These new constraints are often not LRF′ -formulas, since
they can still include ODE variables (e.g., z).

We express these constraints in LRF′ by adding extra
ODEs to corresponding integration terms. For a constraint
∀u ∈ [0, tx]. g(z)(u) = g′(z)(u), we define a new ODE
dw
ds = g′(z)(s) − g(z)(s) with a fresh variable w. If the
constraint is true, the value of the variable w is always 0;
that is, the invariant condition ∀u ∈ [0, tx]. w(u) = 0 must
hold. We formally define this process as follows.

Definition 8. For constraints ∀u ∈ [0, tx]. g(z)(u) = g′(z)(u)
or ∃u ∈ [0, tx]. g(z)(s) 6= g′(z)(s), the LRF′ -reduction of
integration F (y0, t) ≡ y0 +

∫ t
0
f(z)(s) ds is the term:

F̂ (y0, t) ≡ [0,y0] +
∫ t
0
[g′(z)(s)− g(z)(s), f(z)(s)] ds,

and the LRF′ -reductions of the constraints are respectively:

∀u∈ [0, tx]. π1(F̂ (y0, u)) = 0, ∃u∈ [0, tx]. π1(F̂ (y0, u)) 6= 0.

This process also preserves the satisfiability of the formula
as stated in Lemma 2, because every corresponding integration
term of a constraint is identical by assumption.

Lemma 2. A conjunction µ with an extra constraint is
equisatisfiable to the formula µ′ obtained from µ by replacing
corresponding integration terms by their LRF′ -reductions and
replacing the constraint by its LRF′ -reduction.



The time complexity of the entire LRF′ -reduction process
is O(n2), where n denotes the number of LRF′∪G -literals in
the conjunction µ.2 The correctness of our LRF′ -reduction
procedure follows from the fact that each LRF′ -reduction step
in Alg. 1 preserves the satisfiability.

Theorem 2. Given a conjunction µ that meet the boundedness
constraint and the syntactic restriction in Def. 6, Algorithm 1
generates an LRF′ -formula that is equisatisfiable to µ.

C. Checking Satisfiability Using LRF′ -Reduction

We consider the satisfiability of LRF′∪G -formulas of Def. 6.
We apply the LRF′ -reduction process to have equisatisfiable
LRF′ -formulas without extra function symbols in G, and then
employ an existing algorithm to check LRF′ -satisfiability as a
subroutine. Our algorithm terminates if the LRF′ -satisfiability
subroutine is terminated. This provides a theory solver for
LRF′∪G , by means of LRF′ -reduction and an LRF′ -solver.

Algorithm 2: SMT procedure for LRF′∪G -formulas.

Input: An LRF′∪G -formula ∃y. ϕ ∧
∧
ẋ∈G boundGx(ẋ)

Output: Unsat, or Sat with a satisfiable assignment

1 while ∃ a propositionally satisfiable set L of literals do
2 φ ← LRF′ -reduction(

∧
l∈L l);

3 if φ is Sat by LRF′ -satisfiability solving then
4 return Sat and a satisfiable assignment of y;
5 learn the conflicts between LRF′∪G -literals;
6 return Unsat;

Algorithm 2 summarizes our algorithm. We employ the
DPLL(T ) framework to obtain a propositionally satisfiable
set of literals by using Boolean satisfiability solving (line 1).
The formula is unsatisfiable if no propositionally satisfiable set
exists (line 6). Otherwise, each set imposes a conjunction of
LRF′∪G -literals. Since we only consider formulas in the class
of Def. 6, the conjunction satisfies the boundedness constraint.

We apply the LRF′ -reduction procedure in Alg. 1 to obtain
an equisatisfiable LRF′ -formula φ (line 2). We use an SMT
algorithm for LRF′ -formula as a subroutine (line 3). If the
resulting formula φ is satisfiable, then the original formula is
also satisfiable (line 4).3 If φ is not satisfiable, conflict clauses
can be used by SAT solving for the next iteration based on
conflict-driven clause learning (line 5).

D. δ-Complete SMT for LRF′∪G -Formulas

Our algorithm is best suited for nonlinear hybrid systems
where continuous I/O cannot be encoded as discrete actions.
For example, δ-complete SMT can be applied to check the
satisfiability of LRF′ -formulas up to a given precision δ > 0,
called δ-satisfiability [3]. The satisfiability of LRF′ -formulas
is in general undecidable for nonlinear real functions, but the
δ-satisfiability of LRF′ -formulas is decidable.

2There can be many identical integration terms for each step, but the
replacements can be performed in constant time using subformula sharing.

3Since the LRF′ -reduction does not alter first-order variables, satisfiable
assignments for µ and φ have the same values for the first-order variables.

Finding conflict LRF′∪G -literals is very important for the
performance of DPLL(T ) and conflict-driven clause learning,
but this process is nontrivial for δ-complete SMT. The reason
is that δ-consistency actually depends on the value of δ. For
example, LRF′∪G -literals ∀u ∈ [0, 0.5]. ẋ(u) = 1 + 1

2u and
∀u ∈ [0, 0.5]. ẋ(u) =

√
u+ 1 are inconsistent up to precision

δ = 0.01, but consistent up to different precision δ = 0.1.
To facilitate the process of finding conflict LRF′∪G -literals,

we use uniqueness lemmas for incompatible LRF′∪G -literals.
Consider two LRF′∪G -literals ∀u ∈ [0, tx]. ẋ(u) = g(z)(u)
and ∀u ∈ [0, tx]. ẋ(u) = g′(z)(u). If we know in advance
that two functions g and g′ are not equal, we add the formula
¬[∀u∈ [0, tx]. ẋ(u) = g(z)(u)∧ ∀u∈ [0, tx]. ẋ(u) = g′(z)(u)]
and the consistency checking can be performed at line 1.

For the reachability of networks of hybrid I/O automata,
we apply a heuristic specialized for the encoding in Def. 5.
Since each mode q can correspond to only one flow condition,
if a formula ∀u ∈ [0, t]. [ẋ, ȯ](u) = [fq, gq](u) for one
continuous output is true, the truths of other continuous output
formulas are not relevant. In Alg. 1, we choose one universally
quantified LRF′∪G -literal for each mode, and disregard extra
consistency checking in line 4 in this case.

V. CASE STUDIES

This section shows a number of examples of networks
of hybrid system components, besides the airplane example.
They include discrete and continuous interactions between
components, and involve nontrivial nonlinear ODEs.

A. Driving Simple Cars.
A number of cars are running in sequence, while each car

follows the behavior of the car in front (the first car moves
according to its own scenario). The position (xi, yi) and the
direction θi of each car i of length Li depends on its speed
vi and steering angle φi, given by the nonlinear ODEs [18]:

ẋi = vi cos θi, θ̇i = vi/Li · tanφi,

ẏi = vi sin θi, φ̇i = −ki(φi − φi−1),

To keep a safe distance, each car has three modes acc, dec, and
keep for acceleration, deceleration, and following the speed of
the front car, respectively: v̇i = −Ki(vi− vi−1) if qi = keep,
v̇i = C if qi = acc, and v̇i = −C if qi = dec. The goal is to
find a mode change schedule for driving cars safely.

B. Network of Thermostat Controllers.
A number of rooms are interconnected by open doors

(Fig. 2). The temperature xi of each room i is separately
controlled by each thermostat, depending on both the heater’s
mode qi ∈ {mon,moff} and the temperatures of the adjacent
rooms. The value of xi changes according to the ODEs:

dxi
dt

=

{
Ki

(
hi − (cixi − di

∑
j∈Ai xj)

)
if qi = mon

−Ki

(
cixi − di

∑
j∈Ai xj

)
if qi = moff,

where Ai is the set of the adjacent rooms, and Ki, hi, ci, di
depend on the size of the room, the heater’s power, and the
size of the open doors. The goal is to keep each temperature
in a desired range, while the outside temperatures change.
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Fig. 2. Connected rooms

pump k tank k

pump k+1 tank k+1

Fig. 3. Connected water tanks

C. Network of Water Tanks.

A number of water tanks are connected by pipes (Fig. 3),
adapted from [9]. The water level xi of each tank i is
separately controlled by its pump, depending on the pump’s
mode mi ∈ {mon,moff} and the levels of the adjacent tanks.
The value of xi changes according to the nonlinear ODEs:

Aiẋi = (qi + a
√

2g
√
xi−1)− a

√
2g
√
xi if mi = mon

Aiẋi = a
√

2g
√
xi−1 − a

√
2g
√
xi if mi = moff

(x0 = 0 for the leftmost tank 1), where Ai, qi, a depend on
the size of the tank, the power of the pump, and the width of
the pipe, and g is the standard gravity constant. The goal is
to keep each water level in a desired range.

D. Multiple battery Usage.

Given a number of fully charged batteries, a controller
switches load between them to achieve longer lifetime out of
the batteries, adapted from [19]. Each battery i has three modes
switchedOn , switchedOff , and dead . The battery charge
dynamics is expressed by the ODEs:

(on)
ḋi = L/c− kdi
ġi = −L,

(off)
ḋi = −kdi
ġi = 0,

(dead)
ḋi = 0

ġi = 0,

with di its kinetic energy difference, gi its total charge, L its
load, and c ∈ [0, 1] its threshold. If gi > (1− c)di, battery i is
dead. Otherwise, it can be either on or off. When k batteries
are on, load to each battery is divided by k. A goal is to find
a switching schedule to achieve a desired lifetime.

VI. EXPERIMENTAL RESULTS

We have implemented our algorithm in version 2 of the
dReal solver [12]. It can decide the δ-satisfiability of a wide
range of LRF′ -formulas (containing universal quantification
over time).4 We base our implementation on dReal, since the
tool supports nontrivial nonlinear ODEs in our case studies.5

However, in principle our techniques can be combined with
any other SMT-based approaches for hybrid systems.

We have compared the performance of our algorithm for the
LRF′∪G -encoding with one by a non-modular LRF′ -encoding.
Because our examples involve continuous I/O that cannot be
encoded by discrete actions, no modular LRF′ -encoding is
possible. Therefore, we use an LRF′ -encoding of a single
hybrid automaton that is equivalent to the composition, which
has been studied in many approaches [1]–[5], [14], [20].

4dReal uses interval constraint propagation (ICP) to numerically evaluate
ODE integration functions up to a precision δ > 0 [14].

5For example, many analysis tools for nonlinear hybrid systems only
support polynomials or linear ODEs, not nonlinear ODEs.

The experimental results are summarized in Fig. 4. The
case studies and the experimental results are available in [16].
We have performed reachability analysis for the five case
studies up to bound k = 5. We consider two variants for each
example, with double or triple components (for the airplane
example, nonlinear ODEs or linear ODEs). We consider both
sat (reachable) and unsat (unreachable) cases using different
goals. All experiments were conducted on Intel Xeon 2.6 GHz
with 512 GB memory. We set a timeout of 12 hours.

The results show that our approach with the new modular
LRF′∪G -encoding significantly outperforms the old approach
with the non-modular encoding. For example, the analysis
with the non-modular LRF′ -encoding for three interconnected
thermostats did not terminate within 12 hours for bound k = 2,
whereas the same analysis by our algorithm with the modular
LRF′∪G -encoding gave the result less than 15 seconds.

According to the results, the performance improvement
tends to be more apparent for bigger models and for the
unsat cases. For the sat cases, it is possible that a satisfiable
assignment can be found in an early stage of DPLL(T ), e.g.,
the sat case of two batteries where the difference is small.
In a bigger model the size of the generated formula becomes
larger, and thus the benefit of using the modular encoding is
clearly more explicit (e.g., the cases of three batteries).

This performance improvement is due to the fact that
the modular encoding allows a much compact size of the
formulas, and a more efficient ODE solving by decomposition
of complex systems of ODEs. Also, conflict-driven clause
learning can be fully exploited for continuous connections in
this way, because conflicts caused by continuous I/O can be
detected and then learned in our algorithm.

VII. RELATED WORK

One of the early studies on SMT-based analysis of nonlinear
hybrid systems is [21], which proposes constraint solving
algorithms for nonlinear reachability problems. There are
several approaches that explicitly formulate analysis problems
of nonlinear hybrid systems as SMT formulas over the real
numbers, such as MathSAT/HyCOMP [5], [6], hydlogic [4],
iSAT/HySAT [1], [2], and dReal/dReach [12], [20].

But a modular SMT encoding of networks of nonlinear
hybrid systems has not been much investigated, which is what
we aim to improve in this paper. All of these techniques
assume that interactions between components can be specified
through discrete synchronization (e.g., using joint actions).
Hence, continuous interactions between components, which
occur frequently in many networks of hybrid systems as shown
in Sec. V, cannot be properly dealt with in a modular way.

In iSAT-ODE [1], the syntax allows ODE fragments to occur
positively in formulas, and thus the encoding of Def. 6 can be
expressed in principle. But a modular encoding has not been
studied for iSAT-ODE, and the tool does not support it either.
Our work formally identifies a generic class of formulas that
strictly includes one supported by iSAT-ODE. Our algorithm is
based on equisatisfiable LRF′ -reduction, whereas iSAT-ODE
uses a specialized algorithm that extends DPLL.
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Fig. 4. Running time (in seconds) of k-step reachability analysis (solid lines for the new approach and dashed lines for the non-modular approach)

In addition to SMT-based approaches, there are many other
approaches to analyze nonlinear hybrid systems by calculating
a set of reachable states, e.g., [22]–[24]. Our technique and
such reachable-set computation techniques focus on different
aspects of hybrid system analysis. Reachable-set computation
can be used as an ODE solver in Alg. 2, while our technique
addresses higher-level composition and modular analysis.

VIII. CONCLUSIONS

We have presented new SMT-based techniques for analyzing
networks of nonlinear hybrid systems. We have shown that
continuous interactions between hybrid components, which
cannot be captured by discrete communication in general, can
be decomposed and modularly encoded as SMT formulas.
Since existing SMT algorithms cannot deal with the modular
encoding, we have presented a new SMT solving algorithm,
which can greatly increase the performance of SMT-based
analysis for networks of nonlinear hybrid systems.
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APPENDIX

A. Proofs of Lemmas and Theorems

Lemma 1. Given a conjunction µ of LRF′∪G -literals including
∀u ∈ [0, tx]. ẋ(u) = g(z)(u), the formula µ′ obtained from
µ by replacing each occurrence of ẋ in integration terms by
g(z) is equisatisfiable to the conjunction µ.

Proof. By the assumptions in Def. 6, one integration term
[z0, x0] +

∫ tx
0

[f(z, x)(s), ẋ(s)] ds can include ẋ in µ (we
are done if no such integration term exists). Suppose that the
conjunction µ is satisfiable. There exist real numbers zR0 , xR0 ,
tRx and real functions ẋR, xR, zR of domain [0, tRx ], where
• ẋR(u) = g(zR)(u) for u ∈ [0, tRx ],
• ẋR is a derivative of xR,
• zR satisfies the ODEs with zR(0) = z(0):

d
ds [z, x] = [f(z, x), g(zR)](s)

Now let us consider the initial value problem of the ODEs
d
ds [zR, xR] = [f(z, x), g(z)](s) with [z, x](0) = [zR0 , x

R
0 ].

By the Picard-Lindelöf theorem, this problem has a unique
solution, but notice that [zR, xR] is also a solution of it. This
means that the replacement result µ′ including the term

[z0, x0] +
∫ tx
0

[f(z, x)(s), g(z)(s)] ds

is satisfiable by the same real numbers zR0 , xR0 , tRx and real
functions ẋR, xR, zR. The other direction is similar; the same
real numbers and real functions in a satisfiable model of µ′

also satisfy the original formula µ.

Theorem 1. Given a network of HIOAH = H1 ‖ · · · ‖ Hn, its
modular encoding (of size O(k

∑N
j=1 |Qj |2)) and the encoding

of its composition (of size O(k
∏N
j=1 |Qj |)) are equisatisfiable.

Proof Sketch. The modular encoding of the k-step reachability
of the network H is as follows, where the modes of the
components in H are explicitly written by using disjunction,
instead of using existential quantification as Def 5:

N∧
j=1
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 initj
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j
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i , . . . ,x
N
i )

We can apply the distributive laws to rearrange the formula
according to vectors mi = (m0

i , . . . ,m
N
i ) of modes that

denote discrete states of the composition of the network H:
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k, . . . ,yN

t
k)

Now we can apply Lemma 1 to remove uninterpreted
function symbols and parameterized integration operators in
the subformulas of the form (i = 0, . . . , k):∧N

j=1 ct(mj
i ,yj

0
i ,yj

t
i, ti | ι

j
i ,o

j
i ,x

j
i ) ∧ conn(ι1i , . . . ,x

N
i )

which are only part of the formula that cannot be expressed in
LRF′ . As discussed in Sec. IV-D, because only one universally
quantified LRF′∪G -literal is chosen for each mode, formulas for
extra consistency checking are not needed. Suppose that the
resulting LRF′ -subformula is written as:

ct(mi,y0
0
i , . . . ,yN

0
i ,y0

t
i, . . . ,yN

t
i, ti)

Finally, we obtain the LRF′ -formula of size O(k
∏N
j=1 |Qj |)

that is equisatisfiable to the original modular encoding:

∨
m0∈Q0×···×QN

 ∧N
j=1 init

j

m
j
0

(yj
0
0) ∧

ct(m0,y0
0
0, . . . ,yN

0
0,y0

t
0, . . . ,yN

t
0, t0)

 ∧
k∧
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 ∨
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Q0×···×QN

[ ∧N
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j
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i ) ∧
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i , . . . ,yN
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t
i, . . . ,yN

t
i, ti)

]
∧ goal(m1

k, . . . ,m
N
k ,y1

t
k, . . . ,yN

t
k)

This LRF′ -formula extactly describes the concrete behavior
of the composition of the network H1 ‖ · · · ‖ Hn for the
combined mode (q1, . . . , qn) ∈ Q1 × · · · × Qn. Thus, it can
be considered as an encoding of a single hybrid automaton.
Consequently, the modular encoding and the encoding of the
composition are equisatisfiable.

Lemma 2. A conjunction µ with an extra constraint is
equisatisfiable to the formula µ′ obtained from µ by replacing
corresponding integration terms by their LRF′ -reductions and
replacing the constraint by its LRF′ -reduction.

Proof. Suppose that µ is satisfiable. There exists a solution
function zR of the integration term y0 +

∫ t
0
f(z)(s) ds that

satisfies the extra constraint; that is, either:

∀u ∈ [0, tx]. g(z)(u) = g′(z)(u), or
∃u ∈ [0, tx]. g(z)(s) 6= g′(z)(s)

In the formula µ′, since w is a fresh ODE variable, [zR, 0] is
the solution function of the LRF′ -reduction of the integration
term (where 0 is the zero function). Similarly, if the formula
µ′ is satisfiable, there exists a solution function [0, zR] of the
LRF′ -reduction of the integration term, which is the solution
function of the original term and satisfies the constraint.

Theorem 2. Given a conjunction µ that meet the boundedness
constraint and the syntactic restriction in Def. 6, Algorithm 1
generates an LRF′ -formula that is equisatisfiable to µ.

Proof. At line 3, one uninterpreted function in parameterized
integration terms is removed from µ, while preserving the
satisfiability by Lemma 1. After executing the loop of line 4,
the chosen uninterpreted function is entirely removed from µ,
and the result is equisatisfiable to µ by Lemma 2. Therefore,
for each iteration, one uninterpreted function is removed (and
all in the end), while preserving the satisfiability.



TABLE I
RUNNING TIME OF k-STEP REACHABILITY ANALYSIS (- MEANS TIMEOUT)

Time (s)

Benchmark k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

Thermo
(double)

unsat new 0.02 0.11 0.66 4.07 34.23 377.22
old 0.01 0.81 114.33 5723.48 - -

sat new 0.11 0.25 0.79 2.69 31.55 64.73
old 0.11 0.66 41.17 5015.66 - -

Thermo
(triple)

unsat new 0.03 0.64 13.55 280.08 3390.64 31470.83
old 0.03 272.50 - - - -

sat new 0.24 0.85 6.07 107.87 782.46 25854.26
old 0.24 100.13 - - - -

Water
(double)

unsat new 0.02 0.17 1.10 6.42 46.79 528.18
old 0.02 1.31 210.07 9139.09 - -

sat new 0.04 0.59 1.08 2.65 9.06 22.30
old 0.02 1.72 43.72 2448.90 - -

Water
(triple)

unsat new 0.04 0.92 16.57 418.35 4225.10 43093.32
old 0.04 413.66 - - - -

sat new 0.02 1.53 7.10 196.84 201.38 2319.91
old 0.03 208.29 - - - -

Battery
(double)

unsat new 0.01 0.06 0.61 4.77 30.47 171.11
old 0.01 1.20 479.19 - - -

sat new 0.06 0.46 1.65 5.16 25.41 17.17
old 0.06 0.72 2.13 4.99 14.96 18.02

Battery
(triple)

unsat new 0.01 0.29 2.80 13.55 45.09 118.55
old 0.01 - - - - -

sat new 0.09 0.59 2.77 8.86 21.92 44.31
old 0.09 22.61 120.96 - - 269.07

Car
(double)

unsat new 0.02 0.08 2.01 11.73 83.42 509.29
old 0.03 1.20 1681.85 - - -

sat new 0.66 3.86 11.96 36.46 51.95 -
old 0.74 1.78 277.90 15297.14 - -

Car (triple)
unsat new 0.03 0.31 15.06 334.30 16690.72 -

old 3.47 6972.87 - - - -

sat new 1.66 9.85 11218.88 - - -
old 4.94 20.54 - - - -

Simplified
Airplane

unsat new 0.02 0.11 1.51 12.03 79.72 755.13
old 0.02 0.91 93.15 8143.61 - -

sat new 0.16 1.12 3.63 10.45 32.05 285.17
old 0.14 1.90 42.90 1615.98 - -

Nonlinear
Airplane

unsat new 0.04 0.25 13.61 98.32 577.95 3829.00
old 0.04 2.05 852.17 - - -

sat new 0.48 3.67 11.27 31.57 70.24 190.94
old 0.48 5.25 310.39 17130.38 - -


