
SMT-Based Analysis of Virtually Synchronous
Distributed Hybrid Systems∗

Kyungmin Bae
SRI International

Peter Csaba Ölveczky
University of Oslo

Soonho Kong
Carnegie Mellon University

Sicun Gao
MIT CSAIL

Edmund M. Clarke
Carnegie Mellon University

ABSTRACT
This paper presents general techniques for verifying virtually
synchronous distributed control systems with interconnected
physical environments. Such cyber-physical systems (CPSs)
are notoriously hard to verify, due to their combination of
nontrivial continuous dynamics, network delays, imprecise
local clocks, asynchronous communication, etc. To simplify
their analysis, we first extend the PALS methodology—that
allows to abstract from the timing of events, asynchronous
communication, network delays, and imprecise clocks, as
long as the infrastructure guarantees bounds on the net-
work delays and clock skews—from real-time to hybrid sys-
tems. We prove a bisimulation equivalence between Hybrid
PALS synchronous and asynchronous models. We then show
how various verification problems for synchronous Hybrid
PALS models can be reduced to SMT solving over nonlin-
ear theories of the real numbers. We illustrate the Hybrid
PALS modeling and verification methodology on a number
of CPSs, including a control system for turning an airplane.

Keywords
Distributed hybrid systems; SMT; synchronizers; PALS

1. INTRODUCTION
Virtually synchronous distributed hybrid systems consist

of a number of distributed controllers—where each controller
may interact with its physical environment having continu-
ous dynamics which, furthermore, can be correlated—that
should logically behave in a synchronous way. This class of
cyber-physical systems (CPSs) includes avionics, robotics,
automotive, and medical systems. Designing and analyzing
such systems is difficult because of the interrelated contin-
uous behaviors combined with clock skews, network delays,
execution times, and so on.

∗This work was partially supported by ONR Grant
N000141310090, NSF CPS-1330014 and CPS-1446675, and
Air Force STTR Grant F14A-T06-0230.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HSCC ’16, April 12–14, 2016, Vienna, Austria.
c© 2016 ACM. ISBN 978-1-4503-3955-1/16/04. . . $15.00

DOI: http://dx.doi.org/XXXX.XXXX

A key step towards achieving manageable modeling and
verification techniques for this complex class of CPSs is to
extend the PALS framework to distributed hybrid systems.
The PALS (physically asynchronous, logically synchronous)
methodology [1, 3, 15] was developed to reduce the design
and analysis of a virtually synchronous distributed real-time
system (i.e., one without continuous behaviors) to the much
simpler tasks of designing and analyzing the underlying syn-
chronous models, provided that the network infrastructure
can guarantee bounds on computation times, network de-
lays, and imprecision of the local clocks. In this paper we in-
troduce Hybrid PALS for virtually synchronous distributed
hybrid systems. Hybrid PALS extends the approach in [5]
to achieve a bisimulation equivalence between Hybrid PALS
synchronous models and their asynchronous counterparts.

This means that verifying a virtually synchronous dis-
tributed hybrid system reduces to verifying its underlying
synchronous model. Hybrid PALS allows us to abstract
from asynchronous communication, network delays, message
buffering, etc. However, the times at which physical states
are sampled or actuator commands are sent to the environ-
ment cannot be abstracted away. Since these events are
triggered by imprecise local clocks, we must also take into
account those clocks. Furthermore, the physical environ-
ments of different components are often tightly coupled, so
that the continuous dynamics of the entire system becomes
nonlinear. For these reasons, analysis techniques for event-
based systems (such as hybrid automata) or linear systems
cannot be easily used to analyze Hybrid PALS models.

This paper presents SMT solving techniques to address
the challenges of analyzing Hybrid PALS models. The verifi-
cation of a synchronous Hybrid PALS model, which involves
(nonlinear) ordinary differential equations (ODEs) and clock
skews, is reduced to checking the satisfiability of SMT for-
mulas over the real numbers, which is decidable up to any
user-given precision [8, 10]. We show how standard verifi-
cation problems for hybrid systems, such as bounded reach-
ability, unbounded time inductive reasoning, and composi-
tional assume-guarantee reasoning, can be encoded as SMT
formulas for synchronous Hybrid PALS models.

We have applied our techniques on a range of non-trivial
nonlinear systems, including: a control system for turning
an airplane, a networked controller for physically connected
water tanks, and a networked thermostat controller for in-
terconnected adjacent rooms. These case studies involve
nonlinear ODEs and continuous connections between differ-
ent components, and take into account network delays, clock
skews, asynchronous communication, execution times, etc.



To summarize, the new contributions in this paper (also
compared to [5]) are: (i) more refined and complete Hybrid
PALS models; (ii) a bisimulation result between synchronous
and asynchronous Hybrid PALS models; (iii) general SMT
techniques for analyzing synchronous Hybrid PALS models
(as opposed to showing only concrete analysis of toy exam-
ples in [5]); and (iv) illustrating the effectiveness of Hybrid
PALS and the proposed verification methodology on com-
plex examples and hybrid systems benchmarks.

The rest of the paper is organized as follows. Section 2
discusses related work. Section 3 gives a background on
PALS. Section 4 introduces Hybrid PALS. Section 5 shows
SMT encodings for Hybrid PALS models and their analysis.
Section 6 gives an overview of the Hybrid PALS case studies.
Finally, Section 7 gives some concluding remarks.

2. RELATED WORK
PALS [1, 3, 15] targets distributed real-time systems,

whose absence of continuous behaviors means that the tim-
ing of events, and hence local clocks, can be abstracted away
in the synchronous models, which can therefore be verified
by standard model checking techniques. In contrast, (syn-
chronous) Hybrid PALS models must take both continuous
behaviors and clock skews into account and therefore cannot
be analyzed using such techniques for discrete systems.

The initial steps towards a hybrid extension of PALS were
taken in [5]. However, the formal models of Hybrid PALS
in [5] are very different from the models in this work, so
that a bisimulation equivalence could not be provided in [5].
In this paper, Hybrid PALS models are significantly rede-
fined to obtain a bisimulation between synchronous and dis-
tributed hybrid models, and to allow more general sampling
and response times of sensors and actuators. For example,
components in the same synchronous state may have differ-
ent local times in [5], but those times are synchronized in
this paper to properly model the continuous behavior for
tightly coupled environments. Furthermore, [5] shows that
two interconnected thermostats can be verified using dReal,
but does not present general SMT techniques for analyzing
synchronous Hybrid PALS models.

Our case studies on networks of identical hybrid systems
are related to symmetry-reduction approaches for networks
of timed or hybrid automata (e.g., [6, 11, 13]), and their
compositional analysis for any number of identical processes
is related to [12]. Such work uses hybrid or timed automata
where communication is specified using joint synchronous
actions, whereas our work focuses on time-triggered systems
with nonlinear dynamics where communication is governed
by real-time constraints, taking into account network delays,
execution times, and clock skews, and where the local en-
vironments of tightly coupled components continuously in-
teract with each other. In addition, Hybrid PALS consid-
ers general virtually synchronous distributed hybrid systems
(e.g., the airplane example in our paper), besides symmetric
distributed hybrid systems.

3. PRELIMINARIES ON PALS
PALS transforms a multirate synchronous design SD into

a distributed real-time systemMA(SD ,Γ) that satisfies the
same temporal logic properties, provided that the underlying
infrastructure assures bounds Γ = (ε, αmin, αmax, µmin, µmax)
with: (i) ε ≥ 0 the maximal skew of any local clock with

M1 (rate=1) M2 (rate=1)

M3 (rate=3) M4 (rate=2) M5 (rate=3)

Figure 1: A multirate ensemble ET .

respect to the global clock, (ii) [αmin, αmax] time bounds for
executing a transition, and (iii) [µmin, µmax] time bounds for
the network transmission delay. This section overviews the
synchronous models SD , the distributed modelsMA(SD ,Γ),
and their relationship (we refer to [3, 15] for details).

3.1 Discrete Synchronous Models
The synchronous model SD is specified as an ensemble

of (nondeterministic) state machines with input and output
ports. In each iteration, a machine performs a transition
based on its current state and its inputs, proceeds to the
next state, and generates new outputs for the next iteration.

Definition 1. A typed machine M = (Di, S,Do, δM ) is
composed of: (i) Di = Di1 × · · · × Din an input set (a
value to the k-th input port is an element of Dik ), (ii) S a
set of states, (iii) Do = Do1 × · · · ×Dom an output set, and
(iv) δM ⊆ (Di × S)× (S ×Do) a total transition relation.

A collection {Mj}j∈JS∪JF of state machines with different
rates can be composed into a multirate ensemble ET with
global period T , as illustrated in Fig. 1, where the period of
a slow typed machine s ∈ JS (with rate(s) = 1) is k times
the period of a fast machine f ∈ JF with rate(f) = k > 1.
A wiring diagram connects the input and output ports, so
that there are no connections between two fast machines.

In each round of ET , all components perform a transition
in lockstep. A fast machine f is slowed down and performs
k = rate(f) internal transitions in one global synchronous
step. Since a fast machine produces k-tuples of outputs in
one step, input adaptors are used to generate single values
(e.g., the last value, or the average of the k values) for a slow
machine. Likewise, a single output from a slow machine is
adapted to a k-tuple of inputs for a fast machine.

This synchronous composition of an ensemble ET is thus
equivalent to one machine MET = (DETi , SET , DETo , δMET ).
If a machine in ET has a feedback wire connected to itself or
to another component, then the output becomes an input of
the destination in the next iteration. That is, MET ’s states
SET consist of the states of its subcomponents Mj and the
“feedback” outputs. For example, MET of the ensemble ET
in Fig. 1 is the machine given by the outer box.

Definition 2. The transition system for MET is a tuple

ts(MET ) = (SET ×DETi ,−→ET ), where (~s1,~i1) −→ET (~s2,~i2)

iff an ensemble in state ~s1 with input ~i1 from the interface
has a transition to state ~s2 (i.e., ∃~o ((~i1, ~s1), (~s2, ~o)) ∈ δMET ).

3.2 PALS Distributed Real-Time Models
Each component in the distributed model MA(ET ,Γ) is

composed of a machine in ET and wrappers around it, as
depicted in Fig. 2. In MA(ET ,Γ), each machine performs
transitions at its own rate according to its local clock. At
the beginning of its period, it reads input from the layer
above, performs a transition, and then generates output.

A wrapper has I/O buffers, timers, and access to the local
clock of the machine. A PALS wrapper has the same period



Fast Machine

PALS wrapper
Input Adaptor

K-machine
Slow Machine

PALS wrapper
Input Adaptor

Figure 2: The wrapper hierarchies in MA(ET ,Γ).

T and stores received inputs in its input buffer. When its i-
th round begins (at some time in (iT − ε, iT + ε)), it delivers
the contents of its input buffer to its input adaptor wrapper,
and sets its backoff timer to 2ε−µmin. When the execution
of the inner components ends and the backoff timer expires,
the contents of the output buffer are sent out.

An input adaptor wrapper receives the inputs from the
PALS wrapper and applies input adaptors for each period T .
A k-machine wrapper extracts each value from the k-tuple
input and delivers it to the enclosed fast machine at each
fast period T/k, and delivers the k-tuples from the outputs
of the fast machine to its outer layer at a global period T .

Notice that a fast machineMf may not be able to finish all
of its k transitions in a global round, but only k′ transitions
before the outputs must be sent. If k′ < k, then the k-
machine wrapper only sends the first k′ values. The input
adaptor of each input port whose source is Mf must be
(k′ + 1)-oblivious: that is, it ignores the last k − k′ values
vk′+1, . . . , vk in a k-tuple (v1, . . . , vk).

Stable states ofMA(ET ,Γ) are snapshots of the system at
times iT−ε, just before the components inMA(ET ,Γ) start
performing local machine transitions [15]. In MA(ET ,Γ),
network transmission can happen only in the interval (iT +
ε, (i + 1)T − ε). In stable states at times iT − ε, the input
buffers of the PALS wrappers are full, and the other input
and output buffers are empty. The function sync maps sta-
ble states to the corresponding states of MET .

Definition 3. For a stable state C ofMA(ET ,Γ), sync(C)

is a pair ({sj , ~fj}j∈JS∪JF ,~i) ∈ S
ET ×DETi such that: (i) the

machine states in C give the states {sj}j∈JS∪JF in MET ; and
(ii) the values in the input buffers of the PALS wrappers in

C give the values {~fj}j∈JS∪JF in the feedback wires and the

input ~i from the ensemble interface in MET .

Big-step transitions −→st are defined between two stable
states, and they are related to single synchronous steps of
MET . Because of (k′+1)-obliviousness of the input adaptors,
two stable states are related by C1 ∼obl C2 iff their machine
states are identical and their associated input buffer contents
cannot be distinguished by input adaptors.

Theorem 1. [3] The binary relation (∼obl ; sync) is a
bisimulation between the transition system ts(MET ) and the
big-step transition system (Stable(MA(ET ,Γ)),−→st).

4. HYBRID PALS
This section introduces Hybrid PALS, which extends PALS

to distributed hybrid systems. In PALS, the time when an
event takes place does not matter, as long as it happens
within a certain time interval. However, in hybrid systems,
we cannot abstract from the time when a continuous value
is read or an actuator command is given (both of which de-
pend on a component’s local clock), and thus those times
are also included in the synchronous Hybrid PALS models.

t0 t1 t2 t3

v0

τ0

a0

v1

τ1

a1 v2
τ2a2 v3

τ ′
2

v′3
a′2

τ′1

a′1

v′2 τ
′′
2

a′′2

v′′3

Figure 3: A controlled physical environment; e.g.,
((a1, v1, t2 − t1), τ1) ∈ Λ, ((a′1, v1, t2 − t1), τ ′1) ∈ Λ, etc.

In Hybrid PALS, the standard PALS models MA(ET ,Γ)
and ET are nondeterministic models defined for all possible
environment behaviors. For a physical environment E, the
environment restrictions MA(ET ,Γ) � E and ET � E define
the behavior of the models constrained by E. Section 4.5
gives a bisimulation equivalence between MA(ET ,Γ) � E
and ET � E (we refer to the longer report [4] for more details
on the definitions and the proof).

4.1 Controlled Physical Environments
A state of a physical environment of machine M is given

by a tuple ~v = (v1, . . . , vl) ∈ Rl of its physical parameters
~x = (x1, . . . , xl). The behavior of ~x can be modeled by
ODEs that specify trajectories τ1, . . . , τl of ~x over time. A
trajectory of duration T is a function τ : [0, T ] → R [14].
The prefix of τ at time u ∈ [0, T ] is denoted by τ � u,
and the suffix of τ at time u is denoted by τ � u (that is,
(τ � u)(t) = τ(t) for t ∈ [0, u], and (τ � u)(t) = τ(t+ u) for
t ∈ [0, T − u]). Let T denote the set of all trajectories.

A physical environment EM of machine M is specified
as a controlled physical environment, defining any possible
trajectory of its parameters ~x for the control commands from
M . For a state ~v ∈ Rl, a control command a, and a duration
t ∈ R, a physical environment EM gives a trajectory ~τ ∈ T l
of its parameters ~x of duration t, as illustrated in Fig. 3.

Definition 4. A controlled physical environment is a tuple
EM = (C, ~x,Λ), where: (i) C is a set of control commands;
(ii) ~x = (x1, . . . , xl) is a vector of real number variables; and
(iii) Λ ⊆ (C×Rl×R≥0)×T l is a physical transition relation
such that ((a,~v, t), ~τ) ∈ Λ iff for a control command a ∈ C
that lasts for duration t, EM ’s physical state ~x follows the
trajectory ~τ ∈ T l from state ~τ(0) = ~v ∈ Rl.

Many physical environments can be physically correlated,
and one local environment may immediately affect another
environment. Such correlations are naturally expressed as
time-invariant constraints ∀t. ψ of physical parameters over
time t. For example, if parameter x1 of EM1 must be equal
to parameter x2 of EM2 , then the time-invariant constraint
is the formula ∀t. x1(t) = x2(t) with t a variable over time.

Example 1. Consider a distributed CPS controller to roll
an airplane by moving its ailerons (flaps attached to the
end of the left or the right wing), illustrated in Fig. 4.
Each aileron subcontroller moves the corresponding aileron
towards the goal angle given by the main controller. The
subcontrollers and the main controller operate at different
rates. The objective of the main controller is to roll the
aircraft toward the goal angle specified by the pilot.

The physical environment EM of each subcontroller M
specifies the dynamics of the aileron angle xM according to
the moving rate rM (the control command from M) by the



Main
(60 ms,

rate = 1)

Left aileron
(15 ms, rate = 4)

Right aileron
(15 ms, rate = 4)

gφ vφ
gL

vL

gR

vR

EMain

ELeft

ERight

φ

rL

xL

rR

xR

Figure 4: The simple distributed CPS controller.

ODE ẋM = rM . The controlled physical environment is
given by EM = (R, xM ,ΛM ), with R the domain of rM , and
ΛM ⊆ (R×R×R≥0)× T such that

(
(rM , vM , 15), τ

)
∈ ΛM

iff ∀t ∈ [0, 15]. τ(t) = vM +
∫ t

0
rM dt.

The physical environment EMain of the main controller
specifies the dynamics of the roll angle φ using the ODEs
φ̇ = p and ṗ = c(ζR − ζL), disregarding the yawing effect
caused by the rolling, where p is the rolling moment, and ζR
and ζL are the angles of respective ailerons. The controlled
physical environment is EMain = ({∗}, (φ, p, ζL, ζR),ΛMain),
with the singleton {∗}, indicating that EMain has no control
command, and ΛMain ⊆ ({∗} × R4 × R≥0) × T 4 such that(
(∗, (vφ, vp, vζL , vζR), 60), (τφ, τp, τζL , τζR)

)
∈ ΛMain iff:

∀t ∈ [0, 60].

[
τφ

τp

]
(t) =

[
vφ

vp

]
+

∫ t

0

[
τp(t)

c(τζR (t)− τζL (t))

]
dt.

The control angles ζL and ζR must always be the same as
the respective aileron angles xL and xR of the subcontrollers.
However, since the main controller and the subcontrollers
have different periods with local clock skews, the ODEs of
the subcontrollers cannot be “plugged” into EMain . Instead,
their physical correlations are specified by the time-invariant
constraint: ∀t. (ζL(t) = xL(t)) ∧ (ζR(t) = xR(t)). �

4.2 Sampling and Response Timing
A controller M interacts with its physical environment

EM according to its local clock, which may differ from the
global time by up to the maximal clock skew ε > 0. Let
cM : N→ R>0 denote the global time cM (i) at the beginning
of the (i+ 1)-th period according to M ’s local clock.

Fig. 5 depicts the behavior of M with respect to EM in a
PALS distributed model for an interval [iT − ε, (i+ 1)T − ε]
for its period T . The (i+ 1)-th period of M begins at time
cM (i) ∈ (iT − ε, iT + ε). Because of PALS bounds, M has

already received all the inputs~i before time iT−ε. Next, the
physical state ~vI of EM is read at time cM (i) + tI for some
sampling time tI . M then executes its transition based on
the inputs ~i, the sampled state ~vI , and the machine state s.
After the execution, the machine state changes to s′, and the
new controller command a is sent to EM at time cM (i) + tR
for some response time tR for the execution and the actuator
processing. The new outputs ~o from M are delivered to their
destinations for the next round before time (i+ 1)T − ε.

We assume that a control command from M to EM only
depends on M ’s current state s. In Fig. 5, a current control
command a (by state s) remains effective until the execution
of M ends at time uR = cM (i) + tR, and then a new control
command a′ (by state s′) takes effect. That is, EM defines
trajectories ~τ of its physical parameters ~x in a time interval
[iT − ε, (i+1)T − ε] of duration T with respect to (a, a′, uR).

Definition 5. Trajectories ~τ of duration T are realizable
with respect to commands a, a′ ∈ C and a response du-
ration u ∈ R for EM , denoted by ~τ ∈ RTEM (a, a′, u), iff
((a, ~τ(0), u), ~τ � u) ∈ Λ and ((a′, ~τ(u), T − u), ~τ � u) ∈ Λ.

s, a s′, a′
?

iT − ε iT + ε iT + ε+ αM

?

(i+ 1)T − ε

cM (i) cM (i) + tI cM (i) + tR

~v ~vI ~vR
~v′

Figure 5: Timeline for an environment-restricted
controller with a local clock cM , where the curved
line represents the state of EM , and the thick
straight lines represent the discrete states of M .

In practice, the sampling and response times depend on
the machine instructions of a controller M to perform these
tasks, which are expressed as state transitions in our model.
Therefore, we assume that the sampling times of M depend
on its state s, and the response times depend on its state s
and input ~i. To compose M with its physical environment
EM , we define the “interface” between them.

Definition 6. The interface of controller M is defined by
the projection functions π = (πC , πT , πR, πI), for state s and

input ~i: (i) πC(s) ∈ C the control command of M to EM ;

(ii) πT (s) ∈ N a round number; (iii) πR(s,~i) ∈ R a response

time; and (iv) πI(s) ∈ R a sampling time (πI(s) ≤ πR(s,~i)).

4.3 Environment-Restricted Controllers
A controller M is basically a nondeterministic machine

parameterized by any behavior of its environment EM . A
controller M has a state space of the form S × Rm, where
Rm denotes the m physical parameters that M can observe.
Likewise, EM has a state space of the form Rl = Rm × Rn,
where Rm is the observable part of Rl. For state ~v ∈ Rl of
EM , let πO(~v) ∈ Rm denote the observable part of ~v.

The environment restriction M � EM is a normal machine
(see Def. 1) with a combined state space S × Rl, recording
“snapshots” of EM ’s states at times iT − ε. A transition of
M � EM from state (s,~v) to (s′, ~v′) corresponds to realizable
trajectories ~τ for its period T with respect to πC(s) and
πC(s′) and the response duration uR = (cM (i) + πR(s)) −
(iT − ε). The controller M performs a transition based on
the observable physical state πO(~τ(uI)) of EM sampled after
the sampling duration uI = (cM (i) + πI(s))− (iT − ε).

Definition 7. The environment restriction of M by EM
with an interface π is M �π EM = (Di, S×Rl, Do, δM�πEM ),

where ((~i, (s,~v)), ((s′, ~v′), ~o)) ∈ δM�πEM iff for the round
numbers i = πT (s) and πT (s′) = i+1, the sampling duration
uI = (cM (i) + πI(s))− (iT − ε), and the response duration
uR = (cM (i)+πR(s))−(iT −ε): (i) ~τ(0) = ~v and ~τ(T ) = ~v′

for some realizable trajectories ~τ ∈ RTEM (πC(s), uR, πC(s′)),

and (ii)
(
(~i, (s, πO(~τ(uI)))), ((s

′, πO(~v′)), ~o)
)
∈ δM .

Example 2. Consider a subcontroller M in Example 1 to
move an aileron toward the specified angle. In each 15 ms
round, beginning at time cM (i) ∈ (i · 15 ms− ε, i · 15 ms + ε),
M receives a goal angle gM , sets a new moving rate r ′M
based on gM and the observed angle vM , and sends back
vM . M is specified as the machine (R,N×R2,R, δM ), where(
(gM , (i, rM , vM )), ((i′, r ′M , v

′
M ), o)

)
∈ δM holds iff i′ = i+1,

r ′M = (gM − vM )/15, and o = vm.



The interface πM is defined by the projection functions:
(i) πC(i, rM , vM ) = rM ; (ii) πT (i, rM , vM ) = i (the round
number); (iii) πI(i, rM , vM ) = 1 ms (the sampling time); and
(iv) πR((i, rM , vM ), gM ) = 2 ms (the response time). Thus,
the sampling duration is uI = (cM (i)+1)−(i·15−ε) and the
response duration is uR = (cM (i) + 2)− (i · 15− ε) for each
round. For EM = (R, xM ,ΛM ) in Example 1, its observable
state is given by the function πO(xM ) = xM .

The environment restriction ofM by EM is then defined as
the machine M �πM EM = (R,N×R2,R, δM�πMEM ), where

((gM , (i, rM , vM )), ((i′, r ′M , v
′
M ), vM )) ∈ δM�πMEM holds iff:

(i) for some realizable trajectory τ ∈ R15 ms
EM

(rM , r
′
M , uR),

vM = τ(0) and v′M = τ(15); and (ii) an M ’s transition
((gM , (i, rM , τ(uI))), ((i

′, r ′M , v
′
M ), vM )) ∈ δM holds. �

Example 3. Consider the main controller MMain to roll
the aircraft toward the specified angle in Example 1. In each
60 ms round, beginning at cMain(i) ∈ (i·60 ms−ε, i·60 ms+ε),
MMain receives a desired roll angle gφ and the aileron angles
(vL, vR), and sends the new goal angles (gL, gR). MMain is
specified as the typed machine (R3,N×R2,R3, δMain), where(
((gφ, vL, vR), (i, vφ)), ((i′, v′φ), (o, gL, gR))

)
∈ δMain holds iff:

gR = 0.3(gφ − vφ), gL = −gR, o = vφ, and i′ = i+ 1.
The interface πMain is defined by the projection functions:

(i) πC(i, vφ) = ∗ (no control commands); (ii) πT (i, vφ) = i;

(iii) πI(i, vφ) = 3 ms; and (iv) πR((i, vφ),~i) = 10 ms. The
sampling duration is uI = (cMain(i) + 3 ms)− (i · 60 ms− ε)
for each round (the response duration is not important). For
EMain in Example 1, since MMain can only observe the roll
angle φ, its observable state is πO(φ, p, ζL, ζR) = φ.

The environment restriction of MMain by EMain is then
MMain �πMain EMain = (R3,N × R4,R3, δMMain �πMain

EMain ).

For states ~v = (vφ, vp, vζL , vζR) and ~v′ = (v′φ, v
′
p, v
′
ζL
, v′ζR),

a transition (((gφ, vL, vR), (i, ~v)), ((i′, ~v′), (vφ, gL, gR))) holds
iff: (i) ~v = ~τ(0) and ~v′ = ~τ(60) for realizable trajectories
~τ ∈ R60 ms

EMain
(∗, ∗, 10 ms), and (ii) for ~τ = (τφ, τp, τζL , τζR),

(((gφ, vL, vR), (i, τφ(uI))), ((i
′, v′φ), (vφ, gL, gR))) ∈ δMain . �

4.4 Hybrid PALS Synchronous Models
The synchronous model in Hybrid PALS is specified as

a multirate ensemble ET and the physical environments of
subcomponents, where physical correlations between those
environments are specified as time-invariant constraints.

Definition 8. A hybrid multirate ensemble ET �Π E is
composed of: (i) ET a multirate ensemble, (ii) a family
of interface functions Π = {πj}j∈JS∪JF , and (iii) a family
of local physical environments E = 〈{EMj}j∈JS∪JF , (∀t)ψ〉
with (∀t)ψ the time-invariant constraints (shown in Fig. 6).

Example 4. For the simple CPS controller in Example 1,
E60 is a multirate ensemble of the main controller MMain and
the subcontrollers ML and MR, where rate(Main) = 1 and
rate(L) = rate(R) = 4. The machines {MMain ,ML,MR},
interfaces Π = {πMain , πL, πR}, and physical environments
{EMain , EL, ER} are defined in Examples 2–3. The network
connections are shown in Fig. 4. The time-invariant con-
straint (∀t)ψ ≡ (∀t) (ζL(t) = xL(t)) ∧ (ζR(t) = xR(t)) spec-
ifies the continuous physical connections. �

A hybrid ensemble ET �Π E induces a normal multirate
ensemble ET �Π E composed of the environment restrictions
{Mj �π EMj}j∈JS∪JF , which disregards the time-invariant

M1 (rate=1) M2 (rate=1)

M3 (rate=3)

M4 (rate=2)

M5 (rate=3)

E1 E2

E3 E4 E5

Figure 6: A hybrid multirate ensemble ET �Π E,
where (E1, E3, E4) and (E2, E4, E5) are connected by
time-invariant constraints, denoted by dashed lines.

constraints (∀t)ψ. The behaviors of ET �Π E are a subset of
the behaviors of ET �Π E, namely, the behaviors restricted
by (∀t)ψ. As mentioned, a transition of a (decelerated)
environment-restricted machine Mj �π EMj corresponds to
realizable trajectories ~τ in a time interval [iT−ε, (i+1)T−ε]
for a global period T . Hence, a lockstep composition of
such transitions whose realizable trajectories ~τ also satisfy
the time-invariant constraints (∀t)ψ gives a transition of
the synchronous composition MET �ΠE .

4.5 Hybrid PALS Distributed Models
Hybrid PALS maps a hybrid ensemble ET �Π E to the

distributed hybrid system MA(ET ,Γ) �Π E, together with
PALS bounds Γ; i.e., (ET �Π E,Γ) 7→ MA(ET ,Γ) �Π E.
The distributed components inMA(ET ,Γ) �Π E are exactly
the same as the wrapper hierarchies of Fig. 2 inMA(ET ,Γ).
But the controllers in MA(ET ,Γ) �Π E also interact with
their physical environments in E, according to the sampling
and response timing policy Π to determine sensor sampling
timing tI and actuator response timing tR.

The behaviors of the Hybrid PALS distributed system
MA(ET ,Γ) �Π E are the subset of those of the PALS dis-
tributed system MA(ET ,Γ), restricted by the physical en-
vironments and the time-invariant constraints in E. The
continuous dynamics of MA(ET ,Γ) �Π E is “completely”
decided by the controllers, their physical environments, the
timing policies, and the local clocks of the controllers.

More precisely, consider a normal ensemble ET �Π E above,
induced by a hybrid ensemble ET �Π E, and composed of the
environment-restricted controllers {Mj �π EMj}j∈JS∪JF . A
big-step transition is defined from one stable state at time
iT − ε to another stable state at (i+ 1)T − ε for the system
MA(ET �Π E,Γ), as explained in Section 3.2. For such time
intervals [iT − ε, (i + 1)T − ε], each Mj �π EMj provides
(k-step) realizable trajectories ~τj , based on round numbers,
control commands, sampling timings, and response timings.
The behaviors of MA(ET ,Γ) �Π E are the behaviors of
MA(ET �Π E,Γ) that are restricted by the time-invariant
constraints. Big-step transitions of MA(ET ,Γ) �Π E are
therefore exactly those ofMA(ET �Π E,Γ) whose associated
trajectories ~τj satisfy the time-invariant constraints (∀t)ψ.

The correctness of Hybrid PALS follows from the fact that
each physical measurement and physical activation happens
at the same time in both ET �Π E and MA(ET ,Γ) �Π E
with the same timing policies Π (see [4] for more details).

Theorem 2. The relation (∼obi ; sync) is a bisimulation
between the transition system ts(MET �ΠE) and the big-step
transition system induced by MA(ET ,Γ) �Π E, exhibiting
the exactly same set of realizable trajectories.

Proof Sketch. Suppose that there exists a transition
s −→ET �ΠE s′ of MET �ΠE and s (∼obi ; sync) C for a stable



state C of MA(ET ,Γ) �Π E. By definition, there exists
s −→ET �ΠE

s′ of MET �ΠE
with some realizable trajectories

~τ that satisfy the time-invariant constraints (∀t)ψ for the
induced ensemble ET �Π E. By Theorem 1, (∼obi ; sync) is
a bisimulation between the transition systems ts(MET �ΠE

)

and (Stable(MA(ET �Π E,Γ)),−→st). Therefore, for some
stable state C′, there is a big-step transition C −→st C

′ in
MA(ET �Π E,Γ) such that s′ (∼obi ; sync) C′, where both
s −→ET �ΠE

s′ and C −→st C′ involve exactly the same
machine states and inputs. By construction, round numbers,
control commands, sampling timings, and response timings
all depend on machine states and inputs. Therefore, the
trajectories ~τ , which satisfy (∀t)ψ, are also realizable for
C −→st C

′, and there exists a big-step transition C −→st C
′

by MA(ET ,Γ) �Π E. The other direction is similar.

5. HYBRID PALS MODELS IN SMT
Theorem 2 implies that analyzingMA(ET ,Γ) �Π E can be

reduced to the much simpler problem of analyzing MET �ΠE ,
which abstracts from asynchronous communication, network
delays, execution times, message buffering, etc. This section
shows how analysis problems for a hybrid ensemble ET �Π E
can be encoded as formulas over the real numbers and ODEs.
We symbolically encode all possible local clocks to deal with
clock skews. Standard formal analysis problems for hybrid
systems, such as bounded reachability, inductive reasoning,
and compositional assume-guarantee reasoning, are encoded
as logical formulas. The satisfiability of such formulas can
be decided by δ-complete SMT solving [8, 10] up to a given
precision δ > 0. δ-complete SMT solving for a formula φ
returns false if φ is unsatisfiable, and returns true if its syn-
tactic numerical perturbation of φ by δ is satisfiable.1

5.1 Encoding Hybrid PALS Models

5.1.1 Encoding Environment-Restricted Controllers
A controller M can be expressed as a formula of the form

φM (~i, ~y p ~y′, ~o), with variables ~i, ~y, ~y′, and ~o denoting input,
the current state, the next state, and output, respectively,
in such a way that φM (~i, s p s′, ~o) ⇐⇒ ((~i, s), (s′, ~o)) ∈ δM .

Example 5. For an aileron subcontroller M in Example 2,
the formula is φM (ygM , yi, yrM , yvM p y′i, y′rM , y

′
vM , yo) ≡

(y′rM = (ygM −yvM )/15 ∧ yo = yvM ∧ y
′
i = yi+1). Likewise,

the formula for the main controller MMain in Example 3 is
φMain(ygφ , yvL , yvR , yi, yvφ p y′i, y′vφ , yo, ygL , ygR) ≡ (ygR =

0.3(ygφ − yvφ) ∧ ygL = −ygR ∧ yo = yvφ ∧ y
′
i = yi + 1). �

A physical environment EM is encoded as a formula of
the form φEM (~a,~v, u0, ut p ~τ), with: unary function symbols
~τ denoting the trajectories of EM ’s physical parameters ~x,
and variables ~a, ~v, u0, and ut denoting, respectively, control
commands, the initial values of ~τ at time u0, the times at
the beginning and the end of the trajectory duration, where
φEM (~a,~v, u0, ut p ~τ) ⇐⇒ ((~a,~v, ut − u0), ~τ � u0) ∈ Λ.

If the continuous dynamics of ~x is specified as a system
of ODEs d~x

dt
= F~a(~x, t) for a control command ~a and an

interval [u0, ut], then φEM includes universal quantification
over time along with solutions of the ODEs, for example:∨(

guard(~a)→ ∀t ∈ [u0, ut]. ~τ(t) = ~v +
∫ t−u0

0
F~a(~x, t) dt

)
.

1If φ ≡ (x > 3) ∧ (y = z), then its syntactic numerical
perturbation by δ is (x−3 > −δ)∧(y−z ≥ −δ)∧(z−y ≥ −δ).

Example 6. For an aileron subcontroller M in Example 1,
the formula φEM (yrM , yvM , yu0 , yut p τM ) is defined by:

∀t ∈ [yu0 , yut ]. τM (t) = yvM +

∫ t−yu0

0

yrM dt.

For the main controller Main, if yu0 = 0, then the formula
φEMain (yvφ , yvp , yvζL , yvζR , 0, yut p τφ, τp, τζL , τζR) is:

∀t ∈ [0, yut ].

[
τφ(t)

τp(t)

]
=

[
yvφ

yvp

]
+

∫ t

0

[
τp(t)

c(τζR (t)− τζL (t))

]
dt,

where τζR and τζL are given by the subcontrollers using the
time-invariant constraints. �

The encoding of an environment restriction M �π EM has
the form φT,iM�πEM

(~i, ~y, ~v p ~y′, ~v′, ~o p ~τ), with unary function

symbols ~τ denoting EM ’s trajectories, and variables: (i) ~i
denoting input, (ii) (~y,~v) denoting a state at the beginning

of the round (at time iT − ε), (iii) (~y′, ~v′) denoting a state
at the end of the round (at time (i + 1)T − ε), and (iv) ~o
denoting output, given a period T and a round number i.

The values of sampling duration uI = (cM (i)+tI)−(iT−ε)
and response duration uR = (cM (i) + tR) − (iT − ε) are
unknown, due to clock skews. Since iT −ε < cM (i) < iT +ε,
we represent those times as formulas tI < uI < tI + 2ε and
tR < uR < tR + 2ε, so that φM�πEM (~i, s, ~v p s′, ~v′, ~o) iff

((~i, (s,~v)), ((s′, ~v′), ~o)) ∈ δM�πEM for some local clock cM .
For an environment restriction M �π EM , the formula

φT,iM�πEM
(~i, ~y, ~v p ~y′, ~v′, ~o p ~τ) is defined as follows (from the

formal definitions of M �π EM in Definitions 5–7):

(∃~a, ~a′, uI , uR, ~vI , ~vR) ~a = πC(~y) ∧ ~a′ = πC(~y′) ∧
πI(~y) < uI < πI(~y) + 2ε ∧ ~vI = ~τ(uI) ∧

πR(~y,~i) < uR < πR(~y,~i) + 2ε ∧ ~vR = ~τ(uR) ∧
φEM (~a,~v, iT, iT + uR p ~τ) ∧ ~v = ~τ(0) ∧

φEM (~a′, ~vR, iT + uR, (i+ 1)T, p ~τ) ∧ ~v′ = ~τ(T ) ∧

φM (~i, 〈~y, πO(~τ(uI))〉 p 〈~y′, πO(~v′)〉, ~o).

Example 7. For M �π EM in Example 2, the formula
φ15,0
M�πEM

(ygM , yi, yrM , yvM p y′i, y′rM , y
′
vM , yo p τM ) is given

by: ∃uI , uR, vI , vR. (1 < uI < 1 + 2ε) ∧ (2 < uR < 2 + 2ε) ∧
vI = τM (uI) ∧ vR = τM (uR) ∧ φEM (yrM , yvM , 0, uR p τM ) ∧
φEM (y′rM , vR, uR, 15, p τM ) ∧ yvM = τM (0) ∧ y′vM = τM (15)
∧ φM (ygM , yi, yrM , vI p y

′
i, y
′
rM , y

′
vM , yo). �

5.1.2 Encoding Hybrid Ensembles
Recall that all machines in a synchronous composition

MET perform their transitions in lockstep; for a fast machine
f , k = rate(f) transitions in a global round. The encoding

φT,i
(M�πEM )×k

of the k-step deceleration of an environment

restriction M �π EM is given by sequentially composing the

k formulas φ
T/k,ik
M�πEM

, . . . , φ
T/k,(ik+k−1)
M�πEM

for the k subintervals

[(ik + n− 1)T/k − ε, (ik + n)T/k − ε] for n = 1, . . . , k.
The encoding φwire of ET ’s wiring diagram is a conjunction

of equalities between variables for input and output ports.
Each equality corresponds to a connection in ET (together
with an input adaptor for machines with different rates).
Since feedback outputs becomes input of their destinations
in the next step, we use a separate set of variables for such
output ports connected to machines in ET .



A hybrid ensemble ET �Π E of typed machines {Mj}j∈J ,
physical environments {EMj}j∈J , for J = JS ∪ JF , and the
time-invariant constraint (∀t. ψ) is encoded as a formula

φET �ΠE(~i, {~yj , ~vj , ~fj}j∈J p {~y′j , ~v′j , ~f ′j }j∈J , ~o p {~τj}j∈J) is:

∃{~ij , ~oj}j∈J .
∧
s∈JS

(
φT,0Ms�πsEMs

(~is, ~ys, ~vs p ~y′s, ~v′s, ~os p ~τs)
)

∧
∧
f∈JF

(
φT,0

(Mf �πfEMf )×rate(f)(~if , ~yf , ~vf p ~y′f , ~v′f , ~of p ~τf )
)

∧ φwire(~i, ~o, {~ij , ~oj , ~fj , ~f ′j }j∈J) ∧ (∀t. ψ),

with unary function symbols ~τj denoting trajectories for

EMj , and variables (~yj , ~vj), ~fj , (~y′j ,
~v′j), and ~f ′j denoting,

respectively, the state of Mj �πj EMj at the beginning of
the round, the feedback outputs from the previous round,
the state of Mj �πj EMj at the end of the round, and the

feedback outputs for the next round. The variable~i denotes
ensemble inputs, and ~o denotes ensemble outputs.

By construction, a formula φET �ΠE is satisfiable iff there is
a corresponding transition of the synchronous composition
MET �ΠE from iT − ε to (i + 1)T − ε for some local clocks.
Hence, by the bisimulation equivalence (Theorem 2):

Theorem 3. The formula φET �ΠE is satisfiable iff there
exists a corresponding stable transition for some local clocks
in a distributed hybrid system MA(ET ,Γ) �Π E.

Example 8. The hybrid ensemble E60 �Π E in Example 4
is encoded as the formula φE60�ΠE , the conjunction of the
following formulas: (i) for the main controller:

φ60,0
MM �πMEM

(yMgφ , y
M
vL , y

M
vR , yi, ~y p y′i, ~y′, yMo , yMgL , y

M
gR p ~τ)

with ~y = (yvφ , yvp , yvζL , yvζR ), ~y′ = (y′vφ , y
′
vp , y

′
vζL

, y′vζR
),

and ~τ = (τφ, τp, τζL , τζR); (ii) for the subcontrollers:

φ60,0

(ML�πEL)×4(~ygL , ~y
L
0 , y

0
vL p ~yL4 , y4

vL , ~yoL p τL)

∧ φ60,0

(MR�πER)×4(~ygR , ~y
R
0 , y

0
vR p ~yR4 , y4

vR , ~yoR p τR)

with ~ygm = (y1
gm , . . . , y

4
gm), ~yom = (y1

om , . . . , y
4
om), and for

m ∈ {L,R}, ~ymn = (ynim , y
n
rm); (iii) for the wiring diagram:

(y
M
vL

= f
4
oL
∧ f4′

oL
= y

4
oL

) ∧ (
∧4
i=1 y

i
gL

= fM
gL
∧ fM

gL

′
= yMgL

)

∧ (y
M
vR

= f
4
oR
∧ f4′

oR
= y

4
oR

) ∧ (
∧4
i=1 y

i
gR

= fM
gR
∧ fM

gR

′
= yMgR

)

with variables fport denoting a feedback output from the
previous step, and f ′port denoting one for the next step;
and, finally, (iv) for the time-invariant equality constraint
(∀t. τζL(t) = τL(t) ∧ τζR(t) = τR(t)). �

5.2 Encoding Verification Problems
Our goal is to verify safety properties of a distributed

hybrid model MA(ET ,Γ) �Π E, expressed as formulas of
the form safe(~y, ~τ(t)) for state variables ~y, trajectories ~τ ,
and time variable t. We exploit the bisimulation equivalence
MET �ΠE h MA(ET ,Γ) �Π E to verify MA(ET ,Γ) �Π E
using the simpler synchronous hybrid model MET �ΠE .

5.2.1 Bounded Reachability
To verify a safety property up to a given bound n ∈ N

(i.e., for the time interval [−ε, nT−ε]), we encode its bounded
counterexamples for the synchronous hybrid model MET �ΠE .
If the formula is unsatisfiable (that is, no counterexample
exists), then, by Theorem 3, the system satisfies the safety
property in [−ε, nT − ε] for any local clocks.

Definition 9. Bounded reachability of MET �ΠE up to n
rounds for a safety property safe(~y, ~τ(t)), an initial condition

init(~y), and an input constraint in(~i) is encoded by:

∃~y0, {~yk,~ik, ~ok, tk}nk=1. init(~y0) ∧
∨n
k=1 ¬safe(~yk, ~τk(tk))

∧
∧n
k=1

(
φET �ΠE(~ik, ~yk−1 p ~yk, ~ok p ~τk) ∧ in(~ik)

)
.

Some initial state ~y0 satisfies the init condition, and then
MET �ΠE performs n steps of synchronous transitions, each of
which is from some state ~yk−1 to ~yk using trajectories ~τk of
duration T with some input~ik satisfying the input constraint
in. MET �ΠE has bounded counterexamples if some state
(~yk, ~τk(tk)) at some time tk violates the safety safe.

5.2.2 Inductive Reasoning
For unbounded time verification, we encode an inductive

proof of a safety property safe(~y, ~τ(t)) as a logical formula
by using an inductive condition for MET �ΠE ’s synchronous
transitions, which implies the safety property. An inductive
invariant consists of two formulas: indd(~y) for state variables
~y, and ∀t ∈ [0, T ]. indc(~τ(t)) for trajectories ~τ .2

Definition 10. Inductive reasoning of MET �ΠE for a safety
property safe(~y, ~τ(t)), an initial condition init(~y), and an

input constraint in(~i), using an inductive invariant condition
(indd(~y) ∧ ∀t ∈ [0, T ]. indc(~τ(t))) is encoded by:

• ∀~y. init(~y) =⇒ indd(~y)

• ∀~y, ~y′,~i, ~o. (indd(~y) ∧ φET �ΠE(~i, ~y p ~y′, ~o p ~τ) ∧ in(~i))

=⇒ (indd(~y′) ∧ ∀t ∈ [0, T ]. indc(~τ(t)))

• ∀~y,∀t ∈ [0, T ]. indd(~y) ∧ indc(~τ(t)) =⇒ safe(~y, ~τ(t))

The init condition implies the indd condition for any state
variables ~y. If a transition of MET �ΠE is taken from state ~y
satisfying the indd condition, then the indd condition again
holds for any next state ~y′, and in the meantime the indc
condition holds for trajectories ~τ . The inductive condition
indd(~y) ∧ indc(~τ(t)) implies the safety property safe(~y, ~τ(t))
for one round. By proving these conditions, we show that the
safety property holds for unbounded time with unbounded
number of transitions. These formulas can be proved by
checking the unsatisfiability of their negated versions.

5.2.3 Compositional Reasoning
We encode a divide-and-conquer proof to verify a safety

property using standard assume-guarantee reasoning. It is
very useful for dealing with the state explosion problem. In
MET �ΠE , each component Mj �πj EMj performs a transition

based on its input~ij and trajectories ~τj that are restricted by
time-invariant constraints. Hence, we use an input condition
cjin(~ij , ~τj(t)) and an output condition cjout(~oj , ~τj(t)), which
satisfy necessary constraints for compositional reasoning:
(i) assuming an input condition cjin(~ij , ~τj(t)), if a transition

is taken, then the output condition cjout(~oj , ~τj(t)) holds; and
(ii) the collection of the output conditions {cjout(~o, ~τj(t))}j
implies each input condition cjin(~ij , ~τj(t)). Let M j denote

its decelerated version (Mj �πj EMj )
×rate(j).

2A key problem is finding such an inductive invariant for
MET �ΠE , but providing general solutions for this problem is
beyond the scope of this paper.



Definition 11. For each component j in a hybrid ensemble
ET �Π E, consider a safety property safej(~yj , ~τj(t)), an input

constraint inj(~ij) for input from ET ’s interface, and an initial
condition initj(~yj). I/O conditions are given by:

∀t. cjin(~ij , ~τj(t)) ≡ (cjin,d(
~ij) ∧ ∀t ∈ [0, T ]. cjin,c(~τj(t)))

∀t. cjout(~oj , ~τj(t)) ≡ (cjout,d(
~ij) ∧ ∀t ∈ [0, T ]. cjout,c(~τj(t)))

that satisfy the necessary constraints for a compositional
reasoning of the synchronous composition MET �ΠE :

• ∀~ij , ~oj , ~yj , ~y′j .
(
∀t ∈ [0, T ]. cjin(~ij , ~τj(t)) ∧

φT,0
Mj

(~ij , ~yj p ~y′j , ~oj p ~τj)
)

=⇒ ∀t ∈ [0, T ]. cjout(~oj , ~τj(t))

• ∀t ∈ [0, T ].
∧
jc
j
out(~o, ~τj(t)) =⇒

∧
jc
j
in(~ij , ~τj(t))

Both bounded reachability and inductive reasoning can
then be separately performed for each component by also
assuming input conditions for individual components.3 A
compositional bounded reachability problem up to n ∈ N
rounds for component j is encoded by:

∃~yj0, {~y
j
k,
~ijk, ~o

j
k, t

j
k}
n
k=1. initj(~y

j
0) ∧

n∨
k=1

¬safej(~y
j
k, ~τ

j
k(tk))

∧
n∧
k=1

[
φTMj

(~ijk, ~y
j
k−1 p ~yjk, ~o

j
k p ~τ jk) ∧ inj(~i

j
k)

∧∀t ∈ [0, T ]. cjin(~ijk, ~τ
j
k(t))

]

where the input condition ∀t ∈ [0, T ]. cjin(~ijk, ~τ
j
k(t)) is also

assumed for each step in addition to Definition 9.
Likewise, a compositional inductive reasoning problem of

safej(~yj , ~τj(t)) for component j with an inductive condition

ind jd(~yj) ∧ ∀t ∈ [0, T ]. ind jc(~τj(t)) can be encoded by:

• ∀~yj . initj(~yj) =⇒ ind jd(~yj)

• ∀~yj , ~y′j ,~ij , ~oj .

 ind jd(~yj) ∧ φ
T,0

Mj
(~ij , ~yj p ~y′j , ~oj p ~τj)∧

inj(~ij) ∧ ∀t ∈ [0, T ]. cjin(~ij , ~τj(t))


=⇒ (ind jd(

~y′j) ∧ ∀t ∈ [0, T ]. ind jc(~τj(t)))

• ∀~yj , ∀t. ind jd(~yj) ∧ ind jc(~τj(t)) =⇒ safej(~yj , ~τj(t))

The formulas for compositional reasoning can also be proved
by checking the unsatisfiability of their negated versions.

5.3 Removing Universal Quantification
The formulas encoding Hybrid PALS models may contain

universal quantification over uninterpreted functions on the
real numbers, such as time-invariant constraints (∀t. ψ) or

formulas of the form ∀t ∈ [u0, ut]. ~τ(t) = ~v+
∫ t−u0

0
F~a(~x, t) dt,

which are not directly supported by current state-of-the-art
SMT techniques. This section explains how such universal
quantification can be removed from the formulas.

We restrict our attention to time-invariant constraints with
only equality terms, since continuous correlations typically
can be expressed using only equalities (e.g., Example 1).
Equality constraints, such as x1(t) = x2(t), can be removed
from the formula by replacing one side with the other, e.g.,
by replacing each function symbol x1 with x2. From now
on we assume that time-invariant equality constraints have
been removed from the formula in this way.

3Providing general solutions for how to find I/O conditions
for MET �ΠE is beyond the scope of this paper.

Now consider universally quantified formulas of the form
∀t ∈ [u0, ut]. ~τ(t) = ~v +

∫ t−u0

0
F~a(~x, t) dt. Recall that the

term F~a(~x, t) may include “uninterpreted” functions whose
meaning is defined by other components. We assign to a
time interval [uj , u

′
j ] in a global round such a “partial” ODE

system
d~xj
dt

= F j~aj (~xj , t). If every component j assigns its

partial ODE system
d~xj
dt

= F j~aj (~xj , t) to its interval [uj , u
′
j ],

then a complete ODE system {d~xj
dt

= F j~aj (~xj , t)}j , which

contains no uninterpreted functions, can be constructed for
the common interval

⋂
j [uj , u

′
j ], provided that variables are

renamed by the equality time-invariant constraints.

Example 9. The physical environment EMain of the main
controller in Example 1 involves the formula

∀t ∈ [0, 60].

[
τφ(t)

τp(t)

]
=

[
vφ

vp

]
+

∫ t

0

[
τp(t)

c(τζR (t)− τζL (t))

]
dt.

including two uninterpreted function symbols τζL and τζR.
Consider two logical formulas: for the left subcontroller,
∀t ∈ [0, uLR]. τL(t) = vL +

∫ t
0

rateiL dt, and for the right

subcontroller, ∀t ∈ [uRR, 15]. τ(t) = vR +
∫ t

0
raterR dt. For the

common interval [uRR, u
L
R], the complete ODE system is:

τφ(u
L
R)

τp(u
L
R)

τL(u
L
R)

τR(u
L
R)

 =


τφ(u

R
R)

τp(u
R
R)

τL(u
R
R)

vR

+

∫ uLR−u
R
R

0


τp(t)

c(τζR (t)− τζL (t))

rate
i
L

rate
r
R

 dt.

This system indicates a period that the right subcontroller
has responded (with the new rate raterR) but the left one
has not responded yet (due to the clock skews). �

More precisely, a global period [0, T ] for one round of an
ensemble ET �Π E is divided into N contiguous subintervals
[0, t1], [t1, t2], [t2, t3], . . . , [tN−1, T ]. Each interval denotes a
single time segment to which a complete system of ODEs is
assigned. The number N is determined by the total number
of interval assignments in one round, namely, a number of
ODE subformulas ∀t ∈ [u0, ut]. ~x(t) = ~v +

∫ t−u0

0
F~a(~x, t) dt

in the formula φET �ΠE . Finally, we can syntactically build a
complete ODE system for each time segment by enumerating
all possible combinations of partial ODE systems.

6. CASE STUDIES
This section gives an overview of some case studies that

use our methodology to verify virtually synchronous dis-
tributed hybrid systems. All the case studies involve nonlin-
ear ODEs and continuous interactions between distributed
components. They also take into account asynchronous com-
munication, network delays, clock skews, execution times,
etc. Owing to the bisimulation equivalence, we can analyze
the simpler synchronous models ET �Π E instead of analyz-
ing the distributed hybrid models MA(ET ,Γ) �Π E.

We have verified safety properties using inductive and
compositional SMT encodings for any possible set of local
clocks with maximal clock skew ε. We have applied the
dReal SMT solver [9] to check the satisfiability of the SMT
formulas up to a given precision δ > 0 (which is decidable
for nonlinear hybrid systems [8, 10]). All experiments were
conducted on an Intel Xeon 2.0 GHz with 64 GB memory.
The case studies and the experimental results are available
at http://dreal.github.io/benchmarks/networks.



Main
(60 ms,

rate = 1)

Left aileron
(15 ms, rate = 4)

Rudder
(20 ms, rate = 3)

Right aileron
(15 ms, rate = 4)

goalψ ψ

goa
l L

vL

goalV

vV

goalR

vR

EMain

ELeft

ERudder

ERight

ψ

φ

β

rateL

αL

rateV

αV

rateR

αR

Figure 7: The controllers for turning an airplane.

6.1 Turning an Airplane
We consider a multirate virtually synchronous distributed

controller to turn an airplane (adapted from [2]). This is a
more elaborate version of Example 1. To make a turn, an
aircraft rolls towards the direction of the turn by moving
its ailerons. The rolling causes a yawing moment in the
opposite direction, called adverse yaw, which is countered by
using its rudder (a flap attached to the vertical stabilizer).
The subcontrollers for the ailerons and the rudder operate at
different rates, and the main controller orchestrates them to
achieve a smooth turn, as illustrated in Fig. 7. The desired
safety property is that the yaw angle β is always close to 0.

Each subcontroller M gradually moves its surface towards
the goal angle goalM specified by the main controller MMain ,
as explained in Example 1. In each round, M receives goalM
from MMain , determines the moving rate rateM based on
goalM and the current sampled value vM of the angle αM ,
and sends back vM to MMain .4 The local environment EM
specifies the dynamics of αM by the ODE ˙αM = rateM .

The main controller MMain determines the goal angles for
the subcontrollers to make a coordinated turn. In each
round, MMain receives a desired direction goalψ (from the
pilot) and the angles (vL, vV , vR) from the subcontrollers,
and sends back the new goals (goalL, goalV , goalR), based
on the current sampled position values (vψ, vφ, vβ) of the
direction angle ψ, the roll angle φ, and the yaw angle β.
We use a simple control logic to decide the new goal angles
based on the current position angles, namely, by using some
function (goalL, goalV , goalR) = fMain(vψ, vφ, vβ).

The environment EMain specifies the lateral dynamics of
an aircraft as the nonlinear ODEs (depicted in Fig. 8):

β̇ = YζL,ζV ,ζR,β/mV − r + (g/V ) cosβ sinφ,

φ̇ = p, ψ̇ = (g/V ) tanφ,

ṗ = (c1r + c2p) · r tanφ+ c3LζL,ζV ,ζR,β + c4NζL,ζV ,ζR,β ,

ṙ = (c8p− c2r) · r tanφ+ c4LζL,ζV ,ζR,β + c9NζL,ζV ,ζR,β .

where p is the rolling moment, r is the yawing moment,
and YζL,ζV ,ζR,β , LζL,ζV ,ζR,β , and NζL,ζV ,ζR,β are (linear)
functions of the control angles (ζL, ζV , ζR) and β.

The physical environment EMain clearly depends on the
subcontrollers’s physical environments. Each control angle
ζM in EMain must be the same as the corresponding surface
angle αM , but the ODEs of the subcontrollers cannot be
directly “plugged” into EMain , because the main controller
and the subcontrollers have different periods with local clock
skews. The continuous connections between the physical
environments are specified by the time-invariant constraint:
∀t. (ζL(t) = αL(t)) ∧ (ζV (t) = αV (t)) ∧ (ζR(t) = αR(t)).

4For example, the new value of rateM can be given by
sign(goalM − vM ) ·min(abs(goalM − vM )/T,maxM ).

3.4 Aircraft Dynamics 129

Fig. 3.23 Rolling moment due to rate of roll.

on the other wing is decreased and a rolling moment is thus generated. The rolling
moment due to the rate of roll, p, acts in the opposite sense to the direction of rolling
and is equal to Lpp where Lp is the rolling moment derivative due to rate of roll.

Yawing moment derivative due to rate of roll Np. The rate of roll which increases
the lift on the outer part of one wing and reduces it on the other also creates a
differential drag effect. The increase in lift is accompanied by an increase in drag in
the forward direction and the decrease in lift on the other wing by a corresponding
reduction in drag. A yawing moment is thus produced by the rate of roll, p, which
is equal to Npp where Np is the yawing moment derivative due to rate of roll.

Yawing moment derivative due to rate of yaw Nr . The rate of yaw, r , produces
a tangential velocity component equal to lf r where lf is the distance between the
aerodynamic centre of the fin and the yaw axis through the CG. The resulting change
in the effective fin incidence angle, lf r/VT , produces a lift force which exerts a
damping moment about the CG opposing the rate of yaw. The yawing moment due
to the rate of yaw is equal to Nrr where Nr is the yawing moment derivative due to
rate of yaw.

Rolling moment derivative due to rate of yaw Lr . When the aircraft yaws, the
angular velocity causes one wing to experience an increase in velocity relative to
the airstream and the other wing a decrease. The lift on the leading wing is thus
increased and the trailing wing decreased thereby producing a rolling moment. The
rolling moment derivative due to rate of yaw is denoted by Lr and the rolling mo-
ment due to rate of yaw is equal to Lrr .

Lateral control derivatives due to ailerons and rudder. The ailerons and rudder
are illustrated in Figure 3.15. The angle through which the ailerons are deflected
differentially from their position in steady trimmed flight is denoted by ξ and the

3.6 Lateral Control 149

Fig. 3.33 Forces acting in a turn.

Z sin ! = mVT "̇

Vertical component of the lift force is Z cos !. Equating this to the aircraft weight
gives

Z cos ! = mg

from which

tan ! = VT "̇

g
(3.66)

Thus the acceleration towards the centre of the turn is g tan !.
Referring to the inset vector diagram in Figure 3.33, the normal acceleration

component is thus equal to g sec !. Thus a 60◦ banked turn produces a centripetal
acceleration of 1.73g and a normal acceleration of 2g. At a forward speed of 100 m/s
(200 knots approx.) the corresponding rate of turn would be 10.4◦/s.

The lift required from the wings increases with the normal acceleration and the
accompanying increase in drag requires additional engine thrust if the forward speed
is to be maintained in the turn. The ability to execute a high g turn thus requires a
high engine thrust/aircraft weight ratio.

To execute a coordinated turn with no sideslip requires the operation of all three
sets of control surfaces, that is the ailerons and the tailplane (or elevator) and to a
lesser extent the rudder. It is also necessary to operate the engine throttle(s) to con-
trol the engine thrust. The pilot first pushes the stick sideways to move the ailerons
so that the aircraft rolls, the rate of roll being dependent on the stick movement. The
rate of roll is arrested by centralising the stick when the desired bank angle for the
rate of turn has been achieved. The pilot also pulls back gently on the stick to pitch
the aircraft up to increase the wing incidence and hence the wing lift to stop loss

Figure 8: Forces acting in a turn of an aircraft [7].

We first performed bounded reachability analysis to verify
the safety property ∀t. abs(β(t)) < 0.2, where all state vari-
ables are initially 0◦ and the goal direction from the pilot
is fixed (e.g., 30◦). In the analysis, we assume the sam-
pling time tI = 0 ms for every controller, the response time
tR = 3 ms for every subcontroller (the main controller has
no actuator), and the maximal clock skew ε = 0.2 ms. For
bound k = 10, the analysis took 16 hours using dReal with
precision δ = 0.001, which is quite slow due to complex non-
linear ODEs, nontrivial discrete controls, etc.

Therefore, we have applied compositional reasoning to
conduct a bounded reachability analysis in a compositional
way. We first show that each subcontroller cannot abruptly
change its surface angle towards its goal direction in one
round, so that the change is always less than a certain value.5

Next, assuming that a subcontroller cannot abruptly move
its surface, we perform a bounded reachability analysis only
for the main controller using the same initial condition. For
bound k = 20, using dReal with precision δ = 0.0001, the
compositional bounded reachability analysis for the safety
property ∀t. abs(β(t)) < 0.2 took 2 minutes.

6.2 Networked Water Tank Controllers
In this benchmark, adapted from [16], a number of water

tanks are connected by pipes as shown in Fig. 9. The water
level in each tank is controlled by a pump in the tank, and
depends on the pump’s mode m ∈ {mon,moff} and the water
level of the input tank. The water level xi of tank i changes
according to the nonlinear ODEs:

Aiẋi =

{
(qi + a

√
2g
√
xi−1)− b

√
2g
√
xi if mi = mon,

a
√

2g
√
xi−1 − b

√
2g
√
xi if mi = moff,

We set x0 = 0 for the leftmost tank 1. Each pipe controller
performs its transitions according to its local clock and sets
the pump to on if xi ≤ Lm and to off if xi > LM . The
desired safety property is that each water level xi is in the
range I = [Lm − η, LM + η], expressed as (∀t)xi(t) ∈ I.

We have verified the safety property for any number of
connected water tanks for unbounded time with respect to
clock skews using compositional inductive reasoning. First,
assuming that the input water level xi−1 is in I, we show that
xi is in a tighter range I ′ = [Lm − η′, LM + η′] with η′ < η
during one round [0, T ].6 Next, assuming that the input
level xi−1 is in I, we show that (∀t)xi(t) ∈ I is an inductive
condition for one round (that is, xi(0) ∈ I, φET �ΠE , and
∀t ∈ [0, T ]. ci−1

in (xi−1(t)) implies ∀t ∈ [0, T ]. xi(t) ∈ I).

5E.g., the output condition for the left subcontroller is
cLout(vL, αL(t)) ≡ ∀t ∈ [0, T ]. abs(αL(t)− vL) < γ.
6I/O conditions are ciin(xi−1(t)) ≡ (∀t ∈ [0, T ]. xi−1(t) ∈ I)
and ciout(xi(t)) ≡ (∀t ∈ [0, T ]. xi(t) ∈ I ′).



pump k tank k

pump k+1 tank k+1
Hi Hi+1

Figure 9: Connected water tanks, and rooms.

We have proved this compositional safety property for
maximal clock skew ε = 30 ms, sampling time tI = 20 ms,
and response time tR = 100 ms, with precision δ = 0.001
using dReal (the analysis took 4.3 seconds). However, if
ε = 150 ms, then the inductive condition (∀t)xi(t) ∈ I is
violated because the water level can increase up to extra
300 ms (the analysis took 1.46 seconds).

6.3 Networked Thermostat Controllers
A number of rooms are interconnected by open doors, as

shown in Fig. 9. The temperature xi of each room i is sepa-
rately controlled by its own thermostat controller that turns
the heater on and off. That is, xi depends on the heater’s
mode m ∈ {mon,moff} and the temperatures of the con-
nected rooms, and changes according to the ODEs:

ẋi =

{
Ki(hi − ((1− 2c)xi + cxi−1 + cxi+1)) if mi = mon

−Ki((1− 2c)xi + cxi−1 + cxi+1) if mi = moff

In each transition, a controller of room i turns on the heater
if xi ≤ Tm, and turns it off if xi > TM . The safety property
is that the temperature xi of each room is in a certain range
I = [Tm − η, TM + η], expressed as (∀t)xi(t) ∈ I.

We have verified the desired safety property (∀t)xi(t) ∈ I
for any number of interconnected thermostat controllers for
unbounded time, taking into account clock skews, by com-
positional inductive reasoning. Provided that both tempera-
tures xi−1 and xi+1 of the connected rooms are in I, we show
that xi is in a tighter range I ′ = [Tm−η′, TM +η′] ⊆ I with
η′ < η during one round. Then, assuming that both xi−1

and xi+1 are in I, we show that (∀t)xi(t) ∈ I is an inductive
condition for one round in a similar way to Section 6.2.

We have proved the safety property for any number of
thermostats for maximal clock skew ε = 2 ms, sampling time
tI = 10 ms, and response time tR = 200 ms, using dReal
with precision δ = 0.001 (the analysis took 2.6 seconds).
However, if ε = 20 ms, then the compositional inductive
condition (∀t)xi(t) ∈ I is violated because the temperature
rises for extra 20 ms and thus xi /∈ I at the end of the round
(the analysis took 0.56 seconds).

7. CONCLUDING REMARKS
We have presented general techniques for verifying vir-

tually synchronous distributed hybrid systems, with asyn-
chronous communication, imprecise local clocks, network
delays, etc., where each component has a local physical en-
vironment that can be correlated with other local environ-
ments. To make the verification of such systems feasible,
we have extended the PALS methodology to hybrid sys-
tems, and have given a bisimulation equivalence between
the distributed model and the much simpler “synchronous”
model, which abstracts from message exchange (and the re-
sulting interleavings), network delays, execution times, etc.
However, Hybrid PALS cannot abstract from imprecise local
clocks and the timing of sensing and actuating.

We have shown that verification problems for Hybrid PALS
synchronous models (and, by our bisimulation result, the
corresponding distributed hybrid systems) such as bounded
reachability analysis, unbounded inductive reasoning, and
compositional assume-guarantee reasoning, can be expressed
as SMT formulas over the real numbers. We have verified
safety properties of a number of non-trivial distributed hy-
brid systems, with nonlinear ODEs and continuous physical
connections between different components, using dReal.

Future work should develop SMT techniques for finding
inductive invariant and compositional I/O conditions for
nonlinear distributed hybrid systems.

8. REFERENCES
[1] A. Al-Nayeem, M. Sun, X. Qiu, L. Sha, S. P. Miller,

and D. D. Cofer. A formal architecture pattern for
real-time distributed systems. In IEEE RTSS, 2009.

[2] K. Bae, J. Krisiloff, J. Meseguer, and P. C. Ölveczky.
Designing and verifying distributed cyber-physical
systems using Multirate PALS: An airplane turning
control system case study. Sci. Comp. Prog., 103, 2015.

[3] K. Bae, J. Meseguer, and P. C. Ölveczky. Formal
patterns for multirate distributed real-time systems.
Sci. Comp. Program., 91:3–44, 2014.

[4] K. Bae, P. Ölveczky, S. Kong, and S. Gao. SMT-based
analysis of virtually synchronous hybrid systems.
http://kquine.github.io/vsdh/techrep.pdf.

[5] K. Bae and P. C. Ölveczky. Hybrid Multirate PALS.
In Logic, Rewriting, and Concurrency, volume 9200 of
LNCS. Springer, 2015.

[6] S. Bogomolov, C. Herrera, M. Muñiz, B. Westphal,
and A. Podelski. Quasi-dependent variables in hybrid
automata. In HSCC. ACM, 2014.

[7] R. P. Collinson. Introduction to avionics systems.
Springer, 2013.

[8] S. Gao, J. Avigad, and E. M. Clarke. δ-complete
decision procedures for satisfiability over the reals. In
IJCAR, volume 7364 of LNCS. Springer, 2012.

[9] S. Gao, S. Kong, and E. M. Clarke. dReal: An SMT
solver for nonlinear theories over the reals. In CADE,
volume 7898 of LNCS. Springer, 2013.

[10] S. Gao, S. Kong, and E. M. Clarke. Satisfiability
modulo ODEs. In FMCAD. IEEE, 2013.

[11] M. Hendriks, G. Behrmann, K. G. Larsen, P. Niebert,
and F. W. Vaandrager. Adding symmetry reduction to
Uppaal. In FORMATS, volume 2791 of LNCS, 2003.

[12] T. T. Johnson and S. Mitra. A small model theorem
for rectangular hybrid automata networks. In
FMOODS/FORTE. LNCS 7273, Springer, 2012.

[13] T. T. Johnson and S. Mitra. Anonymized reachability
of hybrid automata networks. In FORMATS, volume
8711 of LNCS. Springer, 2014.

[14] N. Lynch, R. Segala, and F. Vaandrager. Hybrid I/O
automata. Infor. and Comput., 185(1), 2003.

[15] J. Meseguer and P. C. Ölveczky. Formalization and
correctness of the PALS architectural pattern for
distributed real-time systems. Theoretical Computer
Science, 451:1–37, 2012.

[16] J. Raisch, E. Klein, S. O’Young, C. Meder, and
A. Itigin. Approximating automata and discrete
control for continuous systems. In Hybrid Systems V,
volume 1567 of LNCS. Springer, 1999.


