
Interpolants in Nonlinear Theories over the
Reals

Sicun Gao and Damien Zufferey?

MIT

Revised on June 17, 2016.

Abstract. We develop algorithms for computing Craig interpolants for
first-order formulas over real numbers with a wide range of nonlinear
functions, including transcendental functions and differential equations.
We transform proof traces from δ-complete decision procedures into in-
terpolants that consist of Boolean combinations of linear constraints.
The algorithms are guaranteed to find the interpolants between two for-
mulas A and B whenever A ∧ B is not δ-satisfiable. At the same time,
by exploiting δ-perturbations one can parameterize the algorithm to find
interpolants with different positions between A and B. We show appli-
cations of the methods in control and robotic design, and hybrid system
verification.

1 Introduction

Verification problems of complex embedded software can be reduced to solving
logic formulas that contain continuous, typically nonlinear, real functions. The
framework of δ-decision procedures [20,22] establishes that, under reasonable
relaxations, nonlinear SMT formulas over the reals are in principle as solvable
as SAT problems. Indeed, using solvers for nonlinear theories as the algorithmic
engines, straightforward bounded model checking has already shown promise on
nonlinear hybrid systems [9,29]. Naturally, for enhancing performance, more ad-
vanced reasoning techniques need to be introduced, extending SMT towards gen-
eral quantifier elimination. However, it is well-known that quantifier elimination
is not feasible for nonlinear theories over the reals. The complexity of quantifier
elimination for real arithmetic (i.e., polynomials only) has a double-exponential
lower bound, which is too high for most applications; when transcendental func-
tions are further involved, the problem becomes highly undecidable.

Craig interpolation provides a weak form of quantifier elimination. Given two
formulas A and B, such that A∧B is unsatisfiable, an interpolant I is a formula
satisfying: (1) A⇒ I, (2) B ∧ I ⇒ ⊥, and (3) I contains only variables common
to A and B. It has found many applications in verifications: as an heuristic

? Sicun Gao was supported by NSF (Grant CCF-1161775 and CPS-1446725). Damien
Zufferey was supported by NSF (Grant CCF-1138967) and DARPA (Grant FA8650-
15-C-7564).

to compute inductive invariant [32,35,37], for predicate discovery in abstraction
refinement loops [34], inter procedural analysis [2,3], shape analysis [1], fault-
localisation [17,10,41], and so on.

In this paper, we present methods for computing Craig interpolants in ex-
pressive nonlinear theories over the reals. To do so, we extract interpolants from
proofs of unsatisfiability generated by δ-decision procedures [23] that are based
on Interval Constraint Propagation (ICP) [6]. The proposed algorithms are guar-
anteed to find the interpolants between two formulas A and B, whenever A∧B
is not δ-satisfiable.

The framework of δ-decision procedures formulates a relaxed notion of logi-
cal decisions, by allowing one-sided δ-bounded errors [20,19]. Instead of asking
whether a formula has a satisfiable assignment or not, we ask if it is “δ-satisfiable”
or “unsatisfiable”. Here, a formula is δ-satisfiable if it would be satisfiable under
some δ-perturbation on the original formula [19]. On the other hand, when the
algorithm determines that the formula is “unsatisfiable”, it is a definite answer
and no numerical error can be involved. Indeed, we can extract proofs of un-
satisfiability from such answers, even though the search algorithms themselves
involve numerical errors [23]. This is accomplished by analyzing the execution
trace of the search tree based on the ICP algorithm.

The core ICP algorithm uses a branch-and-prune loop that aims to either
find a small enough box that witnesses δ-satisfiability, or detect that no solution
exists. The loop consists of two main steps:

– (Prune) Use interval arithmetic to maintain overapproximations of the solu-
tion sets, so that one can “prune” out the part of the state space that does
not contain solutions.

– (Branch) When the pruning operation does not make progress, one performs
a depth-first search by “branching” on variables and restart pruning opera-
tions on a subset of the domain.

The loop is continued until either a small enough box that may contain a solution
is found, or any conflict among the constraints is observed.

-0.2

0

0.2

0.4

0.6

0.8

-1 -0.5 0 0.5 1

-0.2

0

0.2

0.4

0.6

0.8

-1 -0.5 0 0.5 1

-0.2

0

0.2

0.4

0.6

0.8

-1 -0.5 0 0.5 1

-0.2

0

0.2

0.4

0.6

0.8

-1 -0.5 0 0.5 1

-0.2

0

0.2

0.4

0.6

0.8

-1 -0.5 0 0.5 1

contraction by
B: y = -cos(x)+0.8

contraction by
A: y = x2

contraction by
A: y = x2

contraction by
B: y = -cos(x)+0.8

Fig. 1: Interval constraint propagation and interpolant construction where A is
y ≥ x2 and B is y ≤ − cos(x) + 0.8 over the domain x ∈ [−1, 1], y ∈ [−1, 1]. The
A is shown in green and B in red. The final interpolant is the green part.

When a formula is unsatisfiable, the execution trace of the algorithm gener-
ates a (potentially large) proof tree that divides the space into small hypercubes

and associating a constraint to each hypercube [23]. The interpolation algorithm
can essentially traverse this proof tree to construct the interpolant. To each leaf
in the proof, we associate > or ⊥ depending on the source of the contradiction.
The inner nodes of the proof tree correspond to case splits and are handled in
a manner reminiscent of Pudlák’s algorithm [39]. Common variables are kept as
branching points and A,B local variables are eliminated. A simple example of
the method is as follows:

Example 1. Let A : y ≥ x2 and B : y ≤ − cos(x) + 0.8 be two constraints over
the domain x ∈ [−1, 1], y ∈ [−1, 1]. A δ-decision procedure uses A and B to
contract the domains of x and y by removing the parts that be shown empty
using interval arithmetic. Figure 1 shows a sequence of contraction proving the
unsatisfiability of the formula. As the contraction occurs, we color the region
of the space by the color of the opposite formula. When the interval constraint
propagation has finished, the initial domain is associated to either A or B. The
interpolant I is composed of the parts corresponding to A. We will compute that
I is y ≥ 0 ∧ (0.26 ≤ y ∨ (y ≤ 0.26 ∧ −0.51 ≤ x ≤ 0.51)).

We have implemented the algorithms in the SMT solver dReal [21]. We show
examples of applications from various domains such as control and robotic de-
sign, and hybrid system verification.

Special Note. After the first publication of this work, we found that Kupfer-
schmid and Becker have published a similar result [30]. They presented an in-
terpolation algorithm based on McMillan’s propositional interpolation system.
Our algorithm is based on the Pudlák interpolation system [39], which is slightly
different but the main idea is the same. The focus of [30] is on non-ODE con-
straints, while most of the examples in this paper come from hybrid system
design and involve ODE constraints.

Related work. Craig interpolation for real or integer arithmetic has focused on
the linear fragment with LA(R) [33,40] and LA(Z) [8,25], with the exception of
iSat [18] as mentioned in the special note above. Dai et al. [15] present a method
to generate interpolants for polynomial formula. Their method use semi-definite
programming to search for a polynomial interpolant and it is complete under the
Archimedean condition. In fact, the Archimedean condition imposes similar re-
strictions as δ-decidability, e.g., the variables over bounded domains and limited
support for strict inequalities. Our method is more general in that it handles
nonlinear fragments over R that include transcendental functions and solution
functions of ordinary differention equations. Many existing tools can compute
interpolants for in the theory of linear real arithmetic, such as MathSat5 [12],
Princess [8], SmtInterpol [11], and Z3 [36].

Outline. In Section 2, we review notions related to interpolation, nonlinear arith-
metic over the Reals and δ-decision procedures. In Section 3, we introduce our
interpolation algorithm. In Section 4, we present and evaluate our implementa-
tion. We conclude and sketch future research direction in Section 5.

2 Preliminaries

Craig interpolation [14]. Craig interpolants were originally defined in proposi-
tional logic, but can be easily extended to first-order logic. Given two quantifier-
free first-order formulas A and B, such that A ∧ B is unsatisfiable, a Craig
interpolant I is a formula satisfying:

– A⇒ I;
– B ∧ I ⇒ ⊥;
– fv(I) ⊆ fv(A) ∩ fv(B) where fv(·) returns the free variables in a formula.

Intuitively, I provides an overapproximation of A that is still precise enough to
exhibit its conflict with B. In particular, I involves only variables (geometrically,
dimensions) that are shared by A and B.

Notation 1 We use the meta-level symbol ⇒ as a shorthand for logical impli-
cations in texts. In the proof rules that we will introduce shortly, ` is used as the
formal symbol with the standard interpretation as logical derivations.

δ-Complete Decision Procedures. We consider first-order formulas interpreted
over the real numbers. Our special focus is formulas that can contain arbitrary
nonlinear functions that are Type 2 computable [42,7]. Intuitively, Type 2 com-
putability corresponds to numerical computability. For our purpose, it is enough
to note that this set of functions consist of all common elementary functions, as
well as solutions of Lipschitz-continuous ordinary differential equations.

Interval Constraint Propagation (ICP) [6] finds solutions of real constraints
using the branch-and-prune method, combining interval arithmetic and con-
straint propagation. The idea is to use interval extensions of functions to prune
out sets of points that are not in the solution set and branch on intervals when
such pruning can not be done, recursively until a small enough box that may
contain a solution is found or inconsistency is observed. A high-level descrip-
tion of the decision version of ICP is given in Algorithm 1 [6,19]. The boxes, or
interval domains, are written as D and ci denotes the ith constraint.

Proofs from constraint propagation. A detailed description of proof extraction
from δ-decision procedure is available in [23]. Here, we use a simplified version.
Intuitively, the proof of unsatisfiability recursively divides the solution space to
small pieces, until it can prove (mostly using interval arithmetic) that every
small piece of the domain contains no solution of the original system. Note that
in such a proof, the difference between pruning and branching operations become
blurred for the following reason.

Pruning operations show that one part of the domain can be discarded be-
cause no solution can exist there. Branching operations split the domain along
one variable, and generates two sub-problems. From a proof perspective, the
difference between the two kinds of operations is simply whether the emptiness
in one part of domain follows from a simple properties of the functions (theory
lemma), or requires further derivations. Indeed, as is shown in [23], the simple

Algorithm 1 ICP(c1, ..., cm,D = D1 × · · · ×Dn, δ)

1: S ←D
2: while S 6= ∅ do
3: D ← S.pop()
4: while ∃1 ≤ i ≤ m,D 6=δ Prune(D, ci) do
5: D ← Prune(D, ci)
6: end while
7: if D 6= ∅ then
8: if ∃1 ≤ i ≤ m, |D| ≥ ε then . ε is some computable factor of δ
9: {D1,D2} ← Branch(D, i)

10: S.push(D1)
11: S.push(D2)
12: else
13: return sat
14: end if
15: end if
16: end while
17: return unsat

proof system in Figure 2 is enough for establishing all theorems that can be
obtained by δ-decision procedures. The rules can be explained as follows.

– The Split rules divides the solution space into two disjoint subspaces.

– The theory lemmas (ThLem) are the leaves of the proof. They are used when
the solver managed to prove the absence of solution in a given subspace.

– The Weakening rule extracts those conjunct out of the main formula.

We see that each step of the proof has a set of variables x with a domain D
and F is a formula. We use vector notations in the formulas, writing x ∈ D
to denote

∧
i xi ∈ Di. The domains are intervals, i.e., each Di has the form

[li, ui] where li,ui are the lower and upper bounds for xi. Since we are looking at
unsatisfiability proofs, each node implies ⊥. The root of the proof is the formula
A∧B, and D covers the entire domain. The inner nodes are Split, and the proof’s
leaves are theory lemmas directly followed by weakening. To avoid duplication,
we do not give a separate example here, since the full example in Figure 5 shows
the structure of some proof trees obtained from such rules.

A proof of unsatisfiability can be extracted from an execution trace of Algo-
rithm 1 when it returns unsat. The algorithm starts at the root of the proof tree
and explores the proof tree depth-first. Branching (line 9) directly corresponds
to the Split rule. Pruning (line 5), on the other hand, is a combination of the
three rules. Let us look at D′ = Prune(D, ci). The constraint ci is selected with
the Weakening. For each D′

i = [l′, u′] which is strictly smaller than Di = [l, u],
the Split and ThLem rules are applied. If u′ < u then we split on u′ and a lemma
shows that the interval [u, u′] has no solution. The same is done for the lower
bounds l′,l. Figure 3 shows a pruning step and the corresponding proof.

x ∈D ∧ c ` ⊥
(ThLem)

C := c ∧
∧
k

Ck x ∈D ∧ c ` ⊥

x ∈D ∧ C ` ⊥
(Weakening)

xi ∈ [li, p] ∧
∧
j 6=i

xj ∈ Dj ∧ C ` ⊥ xi ∈ [p, ui] ∧
∧
j 6=i

xj ∈ Dj ∧ C ` ⊥

xi ∈ [li, ui] ∧
∧
j 6=i

xj ∈ Dj ∧ C ` ⊥
(Split)

Fig. 2: Proof rules for the ICP algorithm. We use the standard notations for
sequent calculus. Also, when we write an interval [a, b], we always assume that
it is a well-defined real interval satisfying a ≤ b.

u

u′

l

pruning by ci

. . .

...
x ∈ [u′, u] ∧ ci ` ⊥

(ThLem)

x ∈ [u′, u] ∧ ci ∧
∧
k 6=i

ck ` ⊥
(Weakening)

x ∈ [l, u] ∧
∧
k

ck ` ⊥
(Split)

Fig. 3: Pruning operation and the corresponding proof. The pruning shrinks the
domain of x from [l, u] to [l, u′]. The corresponding proof starts with a Split
around u′. The interval [u′, u] is proved empty using a ThLem and Weakening
step. The remaining [l, u′] interval is shown empty by further operations.

3 Interpolants in Nonlinear Theories

Intuitively, a proof of unsatisfiability is a partition of the solution space where
each sub-domain is associated with a conjunct c from A∧B. c is a witness that
shows the absence of solution in a given domain. The interpolation rules traverse
the rules and selects which parts belong to the interpolant I. We now describe
the algorithm for obtaining such interpolants for formulas A and B from the
proof of unsatisfiability for A ∧B.

3.1 Core Algorithms

Our method for constructing disjunctive linear interpolants takes two inputs:
a proof tree and a labeling function. The labeling function maps formula and
variables to either a, b, or ab. For each proof rule introduced in Figure 2, we

x ∈D ∧ c ` ⊥ [l(c) 6= a]
(ThLem-I)

C = c ∧
∧
k

Ck x ∈D ∧ c ` ⊥ [I]

x ∈D ∧ C ` ⊥ [I]
(Weakening-I)

xi ∈ [li, p] ∧
∧
j 6=i

xj ∈ Dj ∧ C ` ⊥ [I1]

xi ∈ [p, ui] ∧
∧
j 6=i

xj ∈ Dj ∧ C ` ⊥ [I2]

xi ∈ [li, ui] ∧
∧
j 6=i

xj ∈ Dj ∧ C ` ⊥

[
I1∨I2 if l(xi)=a
ite(xi<p,I1,I2) if l(xi)=ab
I1∧I2 if l(xi)=b

] (Split-I)

where ite(x, y, z) is a shorthand for (x ∧ y) ∨ (¬x ∧ z)

Fig. 4: Interpolant producing proof rules

associate some partial interpolants, written in square bracket on the right of the
conclusion of the rule. Figure 4 shows these modified versions of the rules.

– At the leaf level (rule ThLem-I), the tile is in I if c is not part of A, i.e.,
the contradiction originates from B. If c is in both A and B then it can be
considered as either part of A or B. Both cases lead to a correct interpolant.

– The Weakening-I rule does not influence the interpolant, it is only required
to pick c from A ∧B.

– The Split-I is the most interesting rule. Splitting the domain essentially de-
fines the bounds of the subsequent domains. Let x be the variable whose
domain is split at value p and I1, I2 be the two interpolants for the case
when x < p and x ≥ p. If x occurs in A but not B, then x cannot occur in
I. Since x is in A then we know that A implies x < p⇒ I1 and x ≥ p⇒ I2.
Eliminating x gives I = I1 ∨ I2. A similar reasoning applies when x occurs
in B but not A and gives I = I1 ∧ I2. When x occurs in both A and B then
x is kept in I and acts as a selector for the values of x smaller than p I1 is
selected, otherwise I2 applies.

The correctness of our method is shown by the following theorem:

Theorem 1. The rules Split-I, ThLem-I, Weakening-I generate a Craig inter-
polant I from the proof of unsatisfiability of A and B.

Proof. We prove correctness of the rules by induction. To express the inductive
invariant, we split the domain D into the domains DA and DB which contains
only the intervals of the variables occurring in A, B respectively.

At any given point in the proof, the partial interpolant I is an interpolant
for the formula A over DA and B over DB . At the root of the proof tree we get
an interpolant for the whole domain D = DA ∧DB .

At the leaves of the proof, or the ThLem-I rule, one of the constraints has no
solution over the domain. Let’s assume that this constraint comes from A. Then
the partial interpolant I is ⊥. We have that A∧DA ⇒ I by the semantics of the
ThLem rule (⊥ ⇒ ⊥). Trivially, B∧DB∧I ⇒ ⊥ and fv(I) = ∅ ⊆ fv(A)∩fv(B).
When the contradiction comes from B, a similar reasoning applies with I = >.

The Weakening-I only serves to select the constraint which causes the con-
tradiction and does not change the invariant.

The Split-I rule is the most complex case. We have to consider whether the
variable x which is split come from A, B, or is shared. For instance, if x ∈ fv(A)
then the induction step has DA1 = DA ∧ x < p and DA2 = DA ∧ x ≥ p and
DB is unchanged. If x ∈ fv(B) then DB is affected and DA is unchanged. If x
is shared then both DA and DB are affected.

Let consider that x ∈ fv(A) and x 6∈ fv(B). We omit the case where x is in
B but not A as it is similar. The induction hypothesis is

A ∧ (DA ∧ x < p)⇒ I1

A ∧ (DA ∧ x ≥ p)⇒ I2

B ∧DB ∧ I1 ⇒ ⊥
B ∧DB ∧ I2 ⇒ ⊥

which simplifies to
A ∧DA ⇒ I1 ∨ I2

B ∧DB ∧ (I1 ∨ I2)⇒ ⊥
.

Finally, we need to consider x ∈ fv(A) and x ∈ fv(B). The induction hy-
pothesis is

A ∧ (DA ∧ x < p)⇒ I1

A ∧ (DA ∧ x ≥ p)⇒ I2

B ∧ (DB ∧ x < p) ∧ I1 ⇒ ⊥
B ∧ (DB ∧ x ≥ p) ∧ I2 ⇒ ⊥

and simplifies to
A ∧DA ⇒ ite(x < p, I1, I2)

B ∧DB ∧ ite(x < p, I1, I2)⇒ ⊥
.

ut

Example 2. If we look at proof for the example in Figure 1, we get the proof
annotated with the partial interpolants shown in Figure 5. The final interpolants
I5 is 0 ≤ y ∧ (0.26 ≤ y ∨ (y ≤ 0.26 ∧ −0.51 ≤ x ≤ 0.51)).

Boolean structure. The method we presented explain how to compute an in-
terpolant for the conjunctive fragment of quantifier-free nonlinear theories over
the reals. However, in many cases formula also contains disjunctions. To handle
disjunctions, our method can be combined with the method presented by Yorsh
and Musuvathi [43] for building an interpolant from a resolution proof where
some of the proof’s leaves carry theory interpolants.

Handling ODE constraints. A special focus of δ-complete decision procedures
is on constraints that are defined by ordinary differential equations, which is
important for hybrid system verification. In the logic formulas, the ODEs are
treated simple as a class of constraints, over variables that represent both state

x ∈ [−0.51, 0.51] ∧ y ∈ [0, 0.26] ∧B ` ⊥ [>]
(ThLem-I)

x ∈ [−0.51, 0.51] ∧ y ∈ [0, 0.26] ∧A ∧B ` ⊥ [I1 : >]
...

(Weakening-I)

x ∈ [0.51, 1] ∧ y ∈ [0, 0.26] ∧A ` ⊥ [⊥]
(ThLem-I)

x ∈ [0.51, 1] ∧ y ∈ [0, 0.26] ∧A ∧B ` ⊥ [⊥]
(Weakening-I)

... [I1]

x ∈ [−0.51, 1] ∧ y ∈ [0, 0.26] ∧ a ∧ b ` ⊥ [I2 : x ≤ 0.51]
...

(Split-I)

... [I2]
x ∈ [−1,−0.51] ∧ y ∈ [0, 0.26] ∧A ` ⊥ [⊥]

(ThLem-I)

x ∈ [−1,−0.51] ∧ y ∈ [0, 0.26] ∧A ∧B ` ⊥ [⊥]
(Weakening-I)

x ∈ [−1, 1] ∧ y ∈ [0, 0.26] ∧ a ∧ b ` ⊥ [I3 : −0.51 ≤ x ≤ 0.51]
...

... [I3]
x ∈ [−1, 1] ∧ y ∈ [0.26, 1] ∧B ` ⊥ [>]

(ThLem-I)

x ∈ [−1, 1] ∧ y ∈ [0.26, 1] ∧A ∧B ` ⊥ [>]
(Weakening-I)

x ∈ [−1, 1] ∧ y ∈ [0, 1] ∧A ∧B ` ⊥ [I4 : 0.26 ≤ y ∨ (y ≤ 0.26 ∧ I3)]
...

(Split-I)

x ∈ [−1, 1] ∧ y ∈ [−1, 0] ∧A ` ⊥ [⊥]
(ThLem-I)

x ∈ [−1, 1] ∧ y ∈ [−1, 0] ∧A ∧B ` ⊥ [⊥]
(Weakening-I)

... [I4]

x ∈ [−1, 1] ∧ y ∈ [−1, 1] ∧A ∧B ` ⊥ [I5 : 0 ≤ y ∧ I4]
(Split-I)

Fig. 5: Proof of unsatisfiability where A is y ≥ x2, B is y ≤ − cos(x) + 0.8 along
with the corresponding interpolant

space and time. Here we elaborate on the proofs and interpolants for the ODE
constraints.

Let t0, T ∈ R and g : Rn → R be a Lipschitz-continuous Type 2 computable
function. Let t0, T ∈ R satisfy t0 ≤ T and x0 ∈ Rn. Consider the initial value
problem

dx

dt
= g(x(t)) and x(t0) = x0, where t ∈ [t0, T].

It has a solution function x : [t0, T] → Rn, which is itself a Type 2 computable
function [42]. Thus, in the first-order language LRF we can write formulas like(

||x0|| = 0
)
∧
(
xt = x0 +

∫ t

0

g(x(s))ds
)
∧
(
||xt|| > 1

)
which is satisfiable when the system defined by the vector field g can have a
trajectory from some point ||x(0)|| = 0 to ||x(t)|| = 1 after time t. Note that we
use first-order variable vectors x0 and xt to represent the value of the solution
function x at time 0 and t. Also, the combination of equality and integration
in the second conjunct simply denotes a single constraint over the variables
(x0,xt, t).

In the δ-decision framework, we perform interval-based integration for ODE
constraints that satisfies the following. Suppose the time domain for the ODE
constraint in question is in [t0, T]. Let t0 ≤ t1 ≤ · · · tm ≤ T be a sequence of time
points. An interval-based integration algorithms compute boxesDt1 , ..., Dtm such
that

∀i ∈ {1, ...,m}, {x(t) : ti ≤ t ≤ ti+1,x0 ∈ Dx0
} ⊆ Dt0 .

Namely, it computes a sequence of boxes such that all possible trajectories are
contained in them over time. Thus, the ODE constraints can be handled in the
same way as non-ODE constraints, whose solution set is covered by a set of
small boxes. Consequently, the proof rules from Figure 4 apply directly to ODE
constraints.

3.2 Extensions

For any two formulas A,B which conjunction is unsatisfiable, the interpolant I is
not unique. In practice, it is difficult to know a priori what is a good interpolant.
Therefore, it is desirable to have the possibility of generating and testing multiple
interpolants. We now explain how to get interpolants of different logical strength.
An interpolant I1 is stronger than an interpolant I2 iff I1 ⇒ I2. Intuitively, a
stronger interpolant is closer to A and a weaker interpolant closer to B.

Parameterizing interpolation strength. The interpolation method that we pro-
pose uses a δ-decision procedure to build a Craig interpolant. I being an in-
terpolant means that A ∧ ¬I and B ∧ I are both unsatisfiable. However, these
formulas might still be δ-satisfiable.

To obtain an interpolant such that both A∧¬I and B∧I are δ-unsatisfiable,
we can weaken both A and B by a factor δ. However, A and B must be at least

3δ-unsatisfiable to guarantee that the solver finds a proof of unsatisfiability.
Furthermore, we can also introduce perturbations only on one side in other to
make the interpolant stronger of weaker. To introduce a perturbation δ, we apply
the following rewriting to every inequalities in A and/or B:

L = R 7→ L ≥ R− δ ∧ L ≤ R+ δ

L ≥ R 7→ L ≥ R− δ
L > R 7→ L > R− δ

Changing the labelling. Due to the similarity of our method to the interpolation
of propositional formulas we can adapt the labelled interpolation system from
D’Silva et.al. [16] to our framework.

In the labelled interpolation system, it is possible to modify the a,b,ab la-
belling as long as it preserves locality, see [16] for the details. An additional
restriction in our case is that we cannot use a projection of constraints at the
proof’s leaves. The projection is not computable in nonlinear theories. Therefore,
the labelling must enforce that the leaves maps to the interpolants > or ⊥.

4 Applications and Evaluation

We have implemented the interpolation algorithm in a modified version of the
dReal SMT solver.1 The proofs produced by dReal can be very large, i.e., gi-
gabytes. Therefore, the interpolants are built and simplified on-the-fly. The full
proof is not kept in memory. We modified the ICP loop and the contractors which
are responsible for the pruning steps. The overhead induced by the interpolant
generation over the solving time is smaller than 10%.

The ICP loop (Figure 1) builds a proof starting from the root of the proof
tree and exploring the tree like a depth-first search. On the other hand, the
interpolation rules build the interpolant starting from the proof’s leaves. Our
implementation modifies the ICP loop to keep a stack P of partial interpolants
alongside the stack of branching points S. When branching (line 9), the value
used to split D1 and D2 is pushed on P . The pruning steps (line 5) are converted
to a proof as shown in Figure 3. When a contradiction is found (line 7, else
branch), P is popped to the branching point where the search resumes and the
corresponding partial interpolant is pushed back on P . When the ICP loop ends,
P contains the final interpolant.

Interpolant sizes. The ICP algorithm implemented in dReal eagerly prunes the
domain by applying repeatedly all the constraints. Therefore, it usually gen-
erates large proofs often involving all the constraints and all the variables. In-
terpolation can extract more precise information from the proof. Intuitively, an
interpolant which is much smaller than the proof are more likely to be useful in
practice. In this test, we try to compare the size of the proof against the size of

1 Currently available in the branch https://github.com/dzufferey/dreal3/.

https://github.com/dzufferey/dreal3/

the interpolants using benchmark from the Flyspeck project [26], certificates for
Lyapunov functions in powertrain control systems [28] and the other examples
presented in the rest of this section.

We run dReal with a 20 minutes timeout and generate 1063 interpolants. Out
of these, 501 are nontrivial. In Figure 6 we plot the number of inequalities in
the nontrivial interpolants against the size of the proof without the Weakening
steps. For similar proofs, we see that the interpolants can be order of magnitude
simpler than the proofs and other interpolants obtained by different partitions
of the formula. The trivial interpolants still bring information as they mean that
the only one side is part of the unsatisfiable core.

1

10

100

1000

10000

100000

1e+06

1e+07

1 10 100
1000

10000

100000

1e+
06

1e+
07

In
te

rp
o
la

n
t

si
ze

Proof size

Fig. 6: Interpolants’ size (number of inequalities) compared to the proofs’ size.

Hybrid system verification. Our method can compute interpolants for systems
of ODEs. For instance, we can check that two trajectories do not intersect.
Figure 7a shows an interpolant obtained for the following equations:

A : xt = x0 +

∫ t

0

−x+ cos(x) dx ∧ x0 = 3 ∧ 0 ≤ t ≤ 2

B : yt = y0 +

∫ t

0

−y + sin(y − 1) dy ∧ y0 = 2 ∧ xt = yt

A large portion, 479 out of 1063, of our examples involves differential equa-
tions. These examples include: airplane control [5], bouncing balls, networked
water tanks, models of cardiac cells [31], verification of the trajectory planning
and tracking stacks of autonomous vehicle (in particular, for lane change ma-
neuver [4]), and example from dReal regression tests. Table 1 shows statistics
about the interpolants for each family of examples.

Family #tests #flow #var proof size interpolant size time

Airplane control 53 [1,4] [56,61] [4213,24249] [70,10260] [57s,178s]
Apex 17 1 44 23 [0,22] [5s,9s]
Bouncing ball 165 2 128 857 [0,28] [1.6s,5.5s]
Cardiac cells 37 4 71 15 [0,1] [15m,20m]
Water tanks 68 [4,8] [18,30] [6530,225099] [331,92594] [7s,12m]
Lane change 15 1 44 24 [0,23] [19s,20s]
Other tests 142 1 5 2 [0,1] [0.1s,1s]

Table 1: Results for the interpolation of ODEs. The [,] notation stands for in-
tervals that cover the values for the whole families of examples. The first column
indicates the family. The next three columns contains the number of tests in the
family, the number of flows and variables in the tests. The last three columns
shows the size of the proofs, interpolants, and the solving time.

Robotic design. Often, hybrid system verification is used in model-based design.
An expert produces a model of the system which is then analysed. However, it
is also possible to extract models directly from the manufacturing designs. As
part of an ongoing project about co-design of both the software and hardware
component of robots [44], we extract equations from robotic designs. In the
extracted models, each structural element is represented by a 3D vector for its
position and a unit quaternion for the orientation. The dimension of the elements
and the joints connecting them corresponds to equations that relate the position
and orientation variables. Active elements, such as motors, also have specific
equations associated to them.

This approach provides models faithful to the actual robots, but it has the
downside of producing large systems of equations. To verify such systems, we
need to simplify them. Due to the presence of trigonometric functions we cannot
use quantifier elimination for polynomial systems of equations [13]. However, we
use interpolation as an approximation of quantifier elimination.

Let us consider a kinematic model, K(x,y, z) where x is a set of design and
input parameters, y is the variables that represent the state of each component
of the robot, and z is the variables that represent the parts of the state needed to
prove the property of interest. For instance, in the case of a robotic manipulator,
x contain the sizes of each element and the angles of the servo motors and z is
the position of the effector. y is determined by the designed of the manipulator.

Fully controlled systems have the property that once the design and input
parameters are fixed, there is a unique solution for remaining variables in the
model. Therefore, we can create an interpolation query:

A : K(x,y, z) ∧
B : K(x,v,w) ∧ (z −w)2 ≥ ε2 where ε > δ

y,v are two copies of the variables we want to eliminate. Since the kinematic is
a function of x which is the same for the two copies z and w should be equal.

Therefore, the formula we build has no solution and we get an interpolant I(x, z)
which is an ε-approximation of ∃y.K(x,y, z).

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

(a) Interpolant for system of nonlinear
ODEs. The black and red curves are
the trajectories described by A and B.
The green area is the interpolant.

1st segment

2nd segment

revolute joint
controlled by
a servo motor

(b) Model of a 1-DOF robotic manipula-
tor composed of two 100mm long segments.
The black line shows the effector’s reach
and the green cubes are the approximation
obtained by interpolation where ε is 10mm.

Fig. 7: Application of interpolation to nonlinear systems

Example 3. Consider the simple robotic manipulator show in Figure 7b. The
manipulator has one degree of freedom. It is composed of two beams connected
by a revolute joint controlled by a servo motor. The first beam is fixed.

The original system of equations describing this system has 22 variables: 7 for
each beam, 7 for the effector, and 1 for the revolute joint. Using the interpolation
we obtain a simpler formula with only 4 variables: 3 for the effector’s position
and 1 for the joint. Table 2 shows some statistics about the interpolants we
obtained using different ε for a one and a two degrees of freedom manipulators.

5 Conclusion and Future Work

We present an method for computing Craig interpolants for first-order formu-
las over real numbers with a wide range of nonlinear functions. Our method
transform proof traces from δ decision procedures into interpolants consisting
of disjunctive linear constraints. The algorithms are guaranteed to find the in-
terpolants between two formulas A and B whenever A ∧ B is not δ-satisfiable.
Furthermore, we show how the framework apply to systems of ordinary dif-
ferential equations. We implemented our interpolation algorithm in the dReal
SMT-solver and apply the method to domains such robotic design, and hybrid
system verification.

In the future, we plan to expand our work to richer proof systems. The ICP
loop produces proof based on interval pruning which results in large, “squarish”

1-DOF Model #var Theory #th. atoms time

original 22 polynomial deg. 2, trig. fct. 24 -

ε = 10 4 linear 1073 0.3s
ε = 5 4 linear 2757 0.6s
ε = 3 4 linear 3307 0.8s
ε = 2 4 linear 6137 1.3s
ε = 1 4 linear 12485 2.6s

2-DOF Model #var Theory #th. atoms time

original 30 polynomial deg. 2, trig. fct. 32 -

ε = 10 5 linear 45686 2m 7s
ε = 7 5 linear 97068 3m 51s
ε = 5 5 linear 184762 6m 41s
ε = 3 5 linear 547558 19m 4s
ε = 2 5 linear 1151454 41m 51s

Table 2: Comparison of the original model of a 1 and 2 degrees of freedom
manipulator against approximations obtained using interpolation. For the size
of the formulas we report the number of theory atoms in the formula. The last
column shows the time dReal takes to compute the interpolants.

interpolants. Using more general proof systems, e.g. cutting planes and semi-
definite programming [15], we will be able to get smaller, smoother interpolants.
CDCL-style reasoning for richer theories, e.g., LA(R) [38] and polynomial [27], is
a likely basis for such extensions. Furthermore, we are interested in investigating
the link between classical interpolation and Craig interpolation over the reals.
Using methods like spline interpolation and radial basis functions, it maybe
possible to build smoother interpolants. We also to extend the our rules to
compute interpolants mixed proofs with both integer and real variables.

Acknowledgments. We thank Martin Fränzle for pointing out the work on Craig
interpolation in iSat, and the anonymous reviewers for their helpful feedback.

References

1. A. Albarghouthi, J. Berdine, B. Cook, and Z. Kincaid. Spatial interpolants. In
J. Vitek, editor, ESOP. Springer, 2015.

2. A. Albarghouthi, A. Gurfinkel, and M. Chechik. Whale: An interpolation-based
algorithm for inter-procedural verification. In V. Kuncak and A. Rybalchenko,
editors, VMCAI. Springer, 2012.

3. A. Albarghouthi, Y. Li, A. Gurfinkel, and M. Chechik. Ufo: A framework for
abstraction- and interpolation-based software verification. In P. Madhusudan and
S. A. Seshia, editors, CAV. Springer, 2012.

4. M. Althoff and J. M. Dolan. Online verification of automated road vehicles using
reachability analysis. Robotics, IEEE Transactions on, 30(4):903–918, 2014.

5. K. Bae, J. Krisiloff, J. Meseguer, and P. C. Ölveczky. Designing and verifying
distributed cyber-physical systems using multirate pals: An airplane turning con-
trol system case study. Science of Computer Programming, 103:13 – 50, 2015.
Selected papers from the First International Workshop on Formal Techniques for
Safety-Critical Systems (FTSCS 2012).

6. F. Benhamou and L. Granvilliers. Continuous and interval constraints. In F. Rossi,
P. van Beek, and T. Walsh, editors, Handbook of Constraint Programming, chap-
ter 16. Elsevier, 2006.

7. V. Brattka, P. Hertling, and K. Weihrauch. A tutorial on computable analysis.
In S. B. Cooper, B. Löwe, and A. Sorbi, editors, New Computational Paradigms,
pages 425–491. Springer New York, 2008.

8. A. Brillout, D. Kroening, P. Rümmer, and T. Wahl. An interpolating sequent cal-
culus for quantifier-free presburger arithmetic. In J. Giesl and R. Hähnle, editors,
IJCAR. Springer, 2010.

9. X. Chen, E. Ábrahám, and S. Sankaranarayanan. Flow*: An analyzer for non-linear
hybrid systems. In N. Sharygina and H. Veith, editors, CAV. Springer, 2013.

10. J. Christ, E. Ermis, M. Schäf, and T. Wies. Flow-sensitive fault localization. In
R. Giacobazzi, J. Berdine, and I. Mastroeni, editors, VMCAI. Springer, 2013.

11. J. Christ, J. Hoenicke, and A. Nutz. Smtinterpol: An interpolating SMT solver.
In A. F. Donaldson and D. Parker, editors, SPIN. Springer, 2012.

12. A. Cimatti, A. Griggio, B. Schaafsma, and R. Sebastiani. The MathSAT5 SMT
Solver. In N. Piterman and S. Smolka, editors, TACAS. Springer, 2013.

13. G. Collins and H. Hong. Partial cylindrical algebraic decomposition for quantifier
elimination. In B. Caviness and J. Johnson, editors, Quantifier Elimination and
Cylindrical Algebraic Decomposition, Texts and Monographs in Symbolic Compu-
tation, pages 174–200. Springer Vienna, 1998.

14. W. Craig. Linear reasoning. A new form of the Herbrand-Gentzen theorem. J.
Symb. Logic, 22:250–268, 1957.

15. L. Dai, B. Xia, and N. Zhan. Generating non-linear interpolants by semidefinite
programming. In N. Sharygina and H. Veith, editors, CAV. Springer, 2013.

16. V. D’Silva, D. Kroening, M. Purandare, and G. Weissenbacher. Interpolant
strength. In G. Barthe and M. V. Hermenegildo, editors, VMCAI. Springer, 2010.

17. E. Ermis, M. Schäf, and T. Wies. Error invariants. In D. Giannakopoulou and
D. Méry, editors, FM. Springer, 2012.

18. M. Fränzle, C. Herde, T. Teige, S. Ratschan, and T. Schubert. Efficient solving
of large non-linear arithmetic constraint systems with complex boolean structure.
JSAT, 1(3-4):209–236, 2007.

19. S. Gao, J. Avigad, and E. M. Clarke. Delta-complete decision procedures for
satisfiability over the reals. In Gramlich et al. [24], pages 286–300.

20. S. Gao, J. Avigad, and E. M. Clarke. Delta-decidability over the reals. In LICS.
IEEE Computer Society, 2012.

21. S. Gao, S. Kong, and E. M. Clarke. dreal: An SMT solver for nonlinear theories
over the reals. In M. P. Bonacina, editor, Automated Deduction - CADE-24 - 24th
International Conference on Automated Deduction, Lake Placid, NY, USA, June
9-14, 2013. Proceedings, volume 7898 of Lecture Notes in Computer Science, pages
208–214. Springer, 2013.

22. S. Gao, S. Kong, and E. M. Clarke. Satisfiability modulo odes. In FMCAD. IEEE,
2013.

23. S. Gao, S. Kong, and E. M. Clarke. Proof generation from delta-decisions. In
F. Winkler, V. Negru, T. Ida, T. Jebelean, D. Petcu, S. M. Watt, and D. Zaharie,
editors, SYNASC. IEEE, 2014.

24. B. Gramlich, D. Miller, and U. Sattler, editors. Automated Reasoning - 6th In-
ternational Joint Conference, IJCAR 2012, Manchester, UK, June 26-29, 2012.
Proceedings, volume 7364 of Lecture Notes in Computer Science. Springer, 2012.

25. A. Griggio, T. T. H. Le, and R. Sebastiani. Efficient interpolant generation in
satisfiability modulo linear integer arithmetic. In P. A. Abdulla and K. R. M.
Leino, editors, TACAS. Springer, 2011.

26. T. Hales, M. Adams, G. Bauer, D. Tat Dang, J. Harrison, T. Le Hoang, C. Kaliszyk,
V. Magron, S. McLaughlin, T. Tat Nguyen, T. Quang Nguyen, T. Nipkow, S. Obua,
J. Pleso, J. Rute, A. Solovyev, A. Hoai Thi Ta, T. N. Tran, D. Thi Trieu, J. Urban,
K. Khac Vu, and R. Zumkeller. A formal proof of the Kepler conjecture. ArXiv
e-prints, Jan. 2015.

27. D. Jovanovic and L. M. de Moura. Solving non-linear arithmetic. In Gramlich
et al. [24], pages 339–354.

28. J. Kapinski, J. V. Deshmukh, S. Sankaranarayanan, and N. Arechiga. Simulation-
guided lyapunov analysis for hybrid dynamical systems. In M. Fränzle and
J. Lygeros, editors, HSCC. ACM, 2014.

29. S. Kong, S. Gao, W. Chen, and E. M. Clarke. dreach: δ-reachability analysis for
hybrid systems. In C. Baier and C. Tinelli, editors, TACAS. Springer, 2015.

30. S. Kupferschmid and B. Becker. Craig interpolation in the presence of non-linear
constraints. In U. Fahrenberg and S. Tripakis, editors, Formal Modeling and Anal-
ysis of Timed Systems - 9th International Conference, FORMATS 2011, Aalborg,
Denmark, September 21-23, 2011. Proceedings, pages 240–255. Springer, 2011.

31. B. Liu, S. Kong, S. Gao, P. Zuliani, and E. M. Clarke. Parameter synthesis for car-
diac cell hybrid models using δ-decisions. In P. Mendes, J. O. Dada, and K. Small-
bone, editors, CMSB. Springer, 2014.

32. K. L. McMillan. Interpolation and sat-based model checking. In W. A. H. Jr. and
F. Somenzi, editors, CAV. Springer, 2003.

33. K. L. McMillan. An interpolating theorem prover. In K. Jensen and A. Podelski,
editors, TACAS. Springer, 2004.

34. K. L. McMillan. Lazy abstraction with interpolants. In T. Ball and R. B. Jones,
editors, CAV. Springer, 2006.

35. K. L. McMillan. Interpolants and symbolic model checking. In B. Cook and
A. Podelski, editors, VMCAI. Springer, 2007.

36. K. L. McMillan. Interpolants from Z3 proofs. In P. Bjesse and A. Slobodová,
editors, FMCAD. FMCAD Inc., 2011.

37. K. L. McMillan. Widening and interpolation. In E. Yahav, editor, SAS. Springer,
2011.

38. K. L. McMillan, A. Kuehlmann, and M. Sagiv. Generalizing DPLL to richer logics.
In A. Bouajjani and O. Maler, editors, CAV. Springer, 2009.

39. P. Pudlák. Lower bounds for resolution and cutting plane proofs and monotone
computations. J. Symbolic Logic, 62(3):981–998, 1997.

40. A. Rybalchenko and V. Sofronie-Stokkermans. Constraint solving for interpolation.
In VMCAI, 2007.

41. M. Schäf, D. Schwartz-Narbonne, and T. Wies. Explaining inconsistent code. In
B. Meyer, L. Baresi, and M. Mezini, editors, ACM SIGSOFT. ACM, 2013.

42. K. Weihrauch. Computable Analysis: An Introduction. 2000.
43. G. Yorsh and M. Musuvathi. A combination method for generating interpolants.

In R. Nieuwenhuis, editor, CADE. Springer, 2005.
44. D. Zufferey, A. Mehta, J. DelPreto, S. Sidiroglou-Douskos, M. Rinard, and D. Rus.

Talos: Full stack robot compilation, simulation, and synthesis. Submitted to
ICRA’16.

	Interpolants in Nonlinear Theories over the Reals

