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Abstract— We introduce new methods for the automatic
vulnerability analysis of power grids under false data injection
attacks against nonlinear (AC) state estimation. We encode the
analysis problems as logical decision problems that can be
solved automatically by SMT solvers. To do so, we propose
an analysis technique named “symbolic propagation,” which
is inspired by symbolic execution methods for finding bugs
and exploits in software programs. We show that the proposed
methods can successfully analyze vulnerability of AC state
estimation in realistic power grid models. Our approach is
generalizable towards many other applications such as power
flow analysis and state estimation.

I. INTRODUCTION

Vulnerability of power grid operations under cyber attacks
has become a major concern for public safety, as illustrated
by realistic incidents such as the Stuxnet attack [8]. In
particular, false data injection (FDI) attacks can modify the
measurement data produced by the SCADA (Supervisory
Control and Data Acquisition) systems and mislead power
grid operators to malfunction [9]. Such attacks against linear
(DC) state estimation models has been extensively studied
([9], [14], [2], [12], [13], [6]). The more realistic nonlinear
(AC) state estimation, however, is considered much harder
to analyze ([5], [12], [11]). In most cases, the analysis
for the nonlinear models has to bypass the difficulty of
solving the full nonlinear power flow equations that are
involved in AC state estimation. Consequently, existing work
has mostly focused on network topological and statistical
analysis, or completely unconstrained attack models, which
assumes that the attackers can arbitrarily modify the values
of any measurement of choice, so that the complexity of
analysis can be reduced.

In this paper, we study strong attack models that do
require reasoning about the nonlinear constraints imposed
by AC state estimation. In particular, we aim to analyze the
vulnerability of buses or branches whose local environment
involves measurements that are constrained. Namely, their
values can not be changed arbitrarily, either because of
physical limits (as studied in [5]) or pre-existing defense and
monitoring mechanisms. When such constraints are coupled
with AC state estimation mechanisms, the search for FDI
attack vectors generally becomes a highly nonlinear and non-
convex constraint solving problem. Our goal is to propose an
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approach that utilizes intensive computation power to cope
with this inherent complexity.

The approach we propose builds upon several methods
that originate from the seemingly unrelated field of software
program analysis, where bug-finding and exploit-generation
are long-standing problems that have seen decades of fruitful
research. In fact, these problems and FDI attack analysis
bear strong mathematical similarity. A software program
implicitly defines a transition system over its program states.
Such transition systems can be represented as graphs labeled
with the program state values. Finding a bug or exploit
corresponds to finding inputs to the program such that certain
assertions become true, such as “the program will enter an
error state” or “the program will fail to terminate.” Similarly,
the FDI vulnerability analysis problem is the search for input
vectors to the measurement variables such that the bad data
monitoring mechanisms fail to raise alerts.

State-of-the-art program analysis techniques can scale
on complex programs that encode transition graphs with
up to millions of nodes. The mainstream approaches all
involve encoding the analysis problems as logical deci-
sion problems, which are then solved with highly efficient
SAT/SMT solvers [7]. Indeed, recent work [10] has exploited
this connection for FDI analysis on DC state estimation,
and demonstrated scalability of the techniques. A potential
difficulty of applying program analysis techniques to AC
state estimation comes from the need of reasoning about
the nonlinear relations between the state and measurement
variables in power grids. Typically, SMT solvers can not han-
dle problems that are numerically-intensive and nonlinear.
This difficulty has been recently resolved in the framework
of delta-decision procedures [3], which are algorithms that
can reason about highly nonlinear logic formulas over real
numbers. Note that the logical decision problems correspond
to problems that are non-convex and non-smooth and thus
NP-hard, and SMT solvers are indeed designed to cope with
such complexity, with much success in practice. In this work,
we demonstrate that the SMT encoding of realistic analysis
problems from the power systems domain can be effectively
handled by the SMT solver dReal [4].

However, the use of powerful solvers can only bring us
half-way towards the goal. While efficient solvers can often
handle challenging problems with many (e.g., hundreds of)
nonlinear constraints, it is unrealistic to expect fully auto-
matic solutions through direct encoding of realistic power
grid with thousands of buses. A main contribution of our
work is the new analysis technique “symbolic propagation,”
which performs localized analysis and uses intermediate



results to guide the enlargement of the sub-grids under
analysis. The idea comes from the similar technique of
symbolic execution in program analysis, which performs
analysis through incremental symbolic representations of
possible program states. We demonstrate that the technique is
effective in the power grid setting, and avoids the reasoning
about global configuration of the grids. On the other hand,
the applicability of localized analysis also highlights the
vulnerability of existing monitoring mechanisms.

The paper is organized as follows. We first demonstrate
how to encode vulnerability analysis as logic formulas in
Section III. We then develop localized analysis and symbolic
propagation techniques in Section IV. We show experimental
results in Section V and conclude with discussion for future
directions in Section VI.

II. PRELIMINARIES

A. Electric Power Grids
An electric power grid is a network of buses and trans-

mission lines between them, which can be mathematically
viewed as a directed graph whose nodes and edges are la-
beled by real-valued variables. In steady state, the admissible
values of these variables satisfy the Kirchhoff laws, and the
control mechanism operates on the measurements of these
values. The state estimation algorithm aims to compute an
optimal estimate of the system state based on the available
measurements. The raw measurements are processed to filter
out measurement noise and detect gross errors.

We use the following formal representation for power
systems that are operating in steady state. The main state
variables are the voltages magnitudes and phasor angles at
each bus. Observations of the system are obtained through
measuring the active and reactive power flows on each
transmission line, as well as the active and reactive power
injections at each bus.

Definition 1 (Power Grid System): A power grid system
is defined as a tuple

〈G,Xv, Xθ, Zp, Zq〉,

where
• G = 〈B,E〉 is a directed graph. B = N<n is a finite

set of buses indexed by natural numbers, and E ⊆ B2

is the set of transmission lines between buses.
• Xv = {vi : i ∈ B} is a set of n variables that denote

the voltage magnitude of bus i.
• Xθ = {θi : i ∈ B} is a set of n variables that denote

the phase angle of bus i at time t.
• Zp = {zpij : (i, j) ∈ B × B} are variables that denote

active power injections/flows on the buses/lines. zpii is a
measurement on a bus i, and zpij is a measurement on
a line (i, j) if (i, j) ∈ E.

• Zq = {zqij : (i, j) ∈ B × B} are variables that denote
reactive power injections/flows on the buses/lines. zpii is
a measurement on a bus i, and, when (i, j) ∈ E, zqij is
a measurement on a line (i, j).

We can write X = Xv ∪ Xθ and Z = ZP ∪ ZQ. X
is called the set of state variables, and Z is the set of

measurements. We also write BG, EG, Xv
G, X

θ
G, Z

p
G, Z

q
G to

denote the corresponding components of G.

B. First-Order Logic Formulas over Real Numbers
We will make extensive use of logic formulas in our

analysis techniques. We use first-order logic formulas, in
which we can mix logic and a wide range of real functions.

Definition 2 (LRF -Formulas): Let F be a set of real func-
tions. The LRF formulas are defined as

(terms) t := x | f(t(~x)), where f ∈ F ;

(formulas) ϕ := t(~x) > 0 |¬ϕ| ϕ ∧ ϕ | ∃xϕ.

The other logical symbols are defined in the standard way.
Example 1: Consider a system of two buses connected by

a transmission line. We use the variables v1 and v2 to encode
the voltages at the two buses, and θ1, θ2 for the phasors. We
use the variable z to represent the active power flow from Bus
1 to 2. Let the conductance and susceptance parameters of
the line be given by g12 and b12. Then, the equation ϕ(v1, θ1)
defined as

ϕ : z = v2
1 − v1v2g12 cos(θ1 − θ2)− v1v2b12 sin(θ1 − θ2)

is a simplest first-order formula that encodes all the possible
values of the state variables x1 and v1 that are consistent
with the power flow equations. Namely, an assignment v1 =
a, θ1 = b is consistent with the equations if and only if
ϕ(a, b) is a true logical statement over real numbers, under
standard interpretation of the function symbols.

The SMT problem asks solutions of logic formulas, in the
sense that if some assignments to the free variables in the
logic formula make the formula a true statement. Formally,

Definition 3 (SMT Problems): Let ϕ(~x) be an arbitrary
LRF -formula, where ~x are its free variables. The SMT
problem for ϕ(~x) asks for one of the following answers:
• For some ~a ∈ R, ϕ(~a) is true;
• No assignment ~a ∈ R makes ϕ(~a) true.

Naturally, SMT solvers implement algorithms for solving
the SMT problems of logical formulas. When the LRF -
formula involve nonlinear real functions, the SMT problem
become hard or undecidable. We can only aim to solve the
δ-SMT problem for such formulas, which allows one-sided
numerical errors bounded by δ. For small enough δ, the
difference does not have practical effects for our application
here, so we omit the discussion. More details of the δ-SMT
problems for LRF -formulas can be found in [3].

III. LOGIC-BASED VULNERABILITY ANALYSIS

A. Power Flow Equations
In steady state, the values of the state variables and

measurements must satisfy the following equations, under
AC state estimation.

Definition 4 (Power Flow Equations): In steady states,
the active and reactive power flows on transmission lines
between Bus i and j (i 6= j) satisfy the following equations:

zpij = hpij(vi, vj , θi, θj)

zqij = hqij(vi, vj , θi, θj)



where

hpij(vi, vj , θi, θj) = v2
i gij − vivjgij cos(θi − θj)

− vivjbij sin(θi − θj)

hqij(vi, vj , θi, θj) = −v2
i bij − vivjbij cos(θi − θj)

− vivjgij sin(θi − θj)

where gij and bij are constants for the conductance and
susceptance of the transmission line.

Definition 5 (Power Injection Equations): The active and
reactive power injections at each bus i are determined by its
set of neighbors Ni,

Ni = {i1, ..., ik}

satisfy the following equations:

zpii = hpii(vi, θi, vi1, ..., vik, θi1, ..., θik)

zqii = hqii(vi, θi, vi1, ..., vik, θi1, ..., θik)

where

hpii(~v,
~θ) = vi

∑
j∈Ni

vj(−gij cos(θi − θj)− bij sin(θi − θj))

hqii(~v,
~θ) = vi

∑
j∈Ni

vj(−gij sin(θi − θj) + bij cos(θi − θj)).

where gij and bij are constants for the conductance and
susceptance of the transmission lines.

When we use logic formulas, it is important to distinguish
between logic encodings and their models. An admissible
model of a grid is an assignment to all its state and mea-
surement variables that satisfy the power flow and injection
equations.

Definition 6 (Admissible Model): Let G be a grid. An
admissible model of G is a function

σ : X ∪ Z → R

such that for every bus i, j ∈ B(G), the power equations are
true under assigned values σ(vij), σ(θij), σ(zpij), and σ(zqij).

Vulnerability analysis corresponds to finding admissible
models that violate safety constraints imposed by the moni-
toring mechanisms in the grid, which we describe next.

B. State Estimation and Bad Data Monitoring

Power grids operators rely on state estimation algorithms
to obtain estimated values of the state variables, through the
values of measurements that come from meter readings.

State estimation is typically performed by weighted least
square algorithms that find optimized estimation of state vari-
ables, assuming that the measurement errors are Gaussian.
Although it is possible to encode the actual state estimation
algorithms as logic formulas (a standard practice in program
analysis), doing so is too costly and not necessary. Instead, it
is sufficient to specify the relation between the measurement
values and the estimated values of the state variables. They
satisfy the power flow and injection equations up to bounded
measurement errors, as is defined as follows:

Definition 7 (State Estimation with Bounded Errors):
Let G be a power grid. The state estimation formula with
ε-bounded errors is defined as

estε(~z, ~x) :=

∃~xo
( ∧
i,j∈B(G)

(
zpij = hpij(~x

o) ∧ zqij = hqij(~x
o)
)

∧ ||~x− ~xo|| < ε

)
.

In words, the assignment to the state variables ~x and mea-
surement variables ~z satisfy the state estimation formula iff
that, with in some ε-bounded difference, they satisfy all the
power flow and injection equations.

Note that the ~z and ~x variables are free, and thus the
formula encodes the set of all state variable values that may
be obtained by applying the state estimation algorithm on the
measurement values ~z. The ~xo variables are bounded by the
existential quantifiers, which denote the precise values that
satisfy the actual equations, but not necessarily what the state
estimation algorithm can obtain, because of the influence of
numerical errors.

An important part of the state estimation process is the
detection of sensor failure and measurement errors. Bad data
monitoring mechanisms aim to identify such problems after
state estimation. A typical method is to test the residue error
in state estimation:

Definition 8 (Bad Data Monitoring): The residue is the
difference between the measurements and the expected mea-
surements computed from the estimated state variables:

~r = ~z − ~h(~x)

Using different methods, one can choose a suitable threshold
τ (for instance, through χ2 test), such that if the residual is
larger than the threshold,

||~r|| ≥ τ,

then the monitor flags bad data. Thus, we write

monτ (~x, ~z) := ||~z − ~h(~x)|| < τ

to encode the pairs (~z, ~x) that are regarded as good data by
the monitor, parameterized by τ .

C. Encoding False Data Injection

False data injection attacks replace the measurements ~z
by artificial values ~z′ = ~z + ~a, such that ~z′ can bypass
the monitor and mislead the central controller. We now
show how to encode false data injection vectors that can
be successful, i.e., bypass the monitoring mechanisms.

Definition 9 (False Data Injection): Let G be a power
grid with m measurement variables. Let estε and monτ
be as specified above. Let ~cz ∈ Rm be a constant vector
that encodes the correct reading of all measurements in
G. A admissible measurement vector satisfies the following
formula:

fdiε,τ (~z,~cz) := ∃~x
(
estε(~z, ~x) ∧monτ (~z, ~x) ∧ ~z 6= ~cz

)
.



In words, although ~z is different from the actual measure-
ment ~cz , ~x and ~z pass the state estimation and monitoring
mechanisms. Note that ~cz can be an arbitrary vector and does
not include variables of the formula.

D. Constrained Measurements

We say a measurement is constrained, if its value is fixed
within some range that is much smaller than the standard
domain of the measurement variables. Such constraints may
be imposed for different reasons. For instance, if a bus does
not have generators or loads, then its power injection has to
be 0. Also, a branch may be under external monitoring such
that the power flow on it can not change by more than 5%
of its standard value. It is straightforward to express these
constraints as logic formulas on the measurements, which
we use to define the formula

con(~z).

For instance, a bus with no power injection needs to satisfy

con(~z) := (zp = 0 ∧ zq = 0).

When measurements are constrained, the attacker can not
modify them to arbitrary values. To launch an FDI attack, the
constraints have to be taken into account, which typically re-
quiring solving the power flow/injection equations involved.
Consequently, constrained measurements are a main source
of complexity for our analysis, as we will see in Section IV.

E. Walking through a 3-Bus Example

Putting everything together, we use a small 3-Bus example
to demonstrate how the encoding works.

B = {0, 1, 2}
E = {(0, 1), (1, 2), (2, 0)}
~x = [θ0 θ1 θ2 v0 v1 v2]T

~z = [zp01 z
p
12 z

p
20 z

p
00 z

p
11 z

p
22 z

q
01 z

q
12 z

q
20 z

q
00 z

q
11 z

q
22]T

The zp and zq variables are calculated through the power
flow and injection equations. Here is an example. Note from
E that the neighbors of bus 1 is bus 0 and bus 2, i.e., N1 =
{0, 2}. We have:

zp11 = hp11(~x)

= v1v0(−g10 cos(θ1 − θ0)− b10 sin(θ1 − θ0))

−v1v2(g12 cos(θ1 − θ2) + b12 sin(θ1 − θ2))

Now, to define the formulas for the state estimators and
monitors, we let hi be the functions on the righthand side
for each zi. The state estimation formula is then defined as:

estε(~z, ~x) :=

∃~xo
(
||~x−~xo|| < ε ∧

∧
(i,j)∈E(G)

(
zpij = hpij(~x)∧zqij = hqij(~x)

)

∧
∧

i∈B(G)

(
zpii = hpii(~x) ∧ zqii = hqii(~x)

))

The monitoring mechanism simply tests

monτ (~x, ~z) := ||~z − ~h(~x)|| < τ.

The measurements may be subject to additional constraints,
such as

con(~z) := |zp12| < 0.5 ∧ |zq12| < 0.5 ∧ z11 = 0.

In all, we have that the formula

fdiε,τ (~z,~cz) := ∃~x
(
est(~z, ~x)∧monτ (~x, ~z)∧con(~z)∧~z 6= ~cz

)
defines the set of all possible measurement ~z that can pass
the τ -monitoring mechanism, while different from the correct
state estimation ~cz . This formula is an SMT formula. Thus,
if an SMT solver can obtain solutions to this formula, then
we have found attack vectors that can bypass the monitoring
mechanisms and mislead the grid operations.

IV. SYMBOLIC PROPAGATION

A key fact, or weakness, of the standard bad data monitor-
ing mechanism is that the monitoring on each measurement
relies only on the values of state variables in the power flow
equation. Different measurements are only indirectly linked
through their shared state variables. As a result, attackers
can localize attacks within sub-grids, by making sure that
the values of the state variables on the boundaries of the
sub-grids remain unchanged. In other words, the boundary
of a sub-grids decouples measurements that are inside and
outside the sub-grid. This observation is also the basis of
existing analysis methods such as in [5].

If all measurements are unconstrained, then to hide an
FDI attack on a particular measurement z, one only needs
to modify a small set of additional measurements – those
that share state variables with z in the power flow/injection
equations. Topologically, the relevant measurements are all
contained in the immediate neighborhood of z. However, if
any of these measurements are subject to additional con-
straints, such that their values can not be changed arbitrarily,
then hiding the attack typically requires a larger “sub-grid
mask.” The work in [5] has studied a special case: when a
bus is not connected to loads or generators, the measurements
in its neighborhood become coupled. Thus there is a rippling
effect on the changes that need to be made to hide the attacks.

In this section we formalize this line of analysis. We define
and prove properties about the notion of localized attacks
under constraints. We propose algorithms that incrementally
enlarge a sub-grid under analysis, based on whether the
measurements are constrained on its boundary. Using this
algorithm, we can find FDI attack vectors (targeting specific
buses or branches) that can be hidden by changing measure-
ments only in a sub-grid of minimal size.

A. Monitoring Mechanisms Are Local

Consider the power flow/injection equations in Definition
4 and 5. They are all of the form

~z = ~h(~x)



where ~z are the measurement variables and ~x are the state
variables. The monitoring mechanism checks for residue
errors

||~z − ~h(~x)|| < τ.

In both equations, the value of z does not rely on any other
measurement, or any state beyond its immediate neighbors.
The consequence is that the monitoring mechanism is en-
tirely local. For instance, consider three buses i, j, and k,
with branches (i, j) and (j, k). The measurements on both
branches satisfy

~zij = hij(~xi, ~xj)

~zjk = hjk(~xj , ~xk)

which only share the state variables ~xj . Suppose ~xj is fixed
to some value ~xj = ~a. Then, assuming that there are no
other constraints on the measurements (in particular, the
power injection on bus j is not constrained), then we can
change ~zij and ~zjk to arbitrary values, as long as those
values are consistent with some ~xi and ~xk. In other words,
the measurements ~zij and ~zjk are decoupled, in the sense
that the change on one of them does not require the change
on the other one. In general, attacks on measurements can
be hidden in their neighborhood, which form a sub-grid, as
long as the estimated values of the state variables on the
boundary of the sub-grid can remain unchanged.

B. Attack Localization

A sub-grid of a grid is simply a subgraph together with
all the state and measurement variables on it. Namely,

Definition 10 (Sub-Grid): Let G = 〈V,Xv, Xθ, Zp, Zq〉
be a power grid. A sub-grid of G is a power grid Ḡ =
〈V̄ , X̄v, X̄θ, Z̄p, Z̄q〉 that satisfies:

B̄ ⊆ B, Ē = {(i, j) ∈ E : i, j ∈ B̄},
X̄v = {vi ∈ Xv : i ∈ B̄}, X̄θ = {vi ∈ Xθ : i ∈ B̄},
Z̄p = {zpij ∈ Z

p : i, j ∈ B̄}, Z̄q = {zqij ∈ Z
q : i, j ∈ B̄}.

The boundary of Ḡ is defined as

∂Ḡ = {i ∈ B(Ḡ) : There exists j ∈ B(G) \B(Ḡ)

such that (i, j) ∈ E(G).}

Namely, ∂Ḡ is the set of all buses in the sub-grid that are
connected to some bus outside of Ḡ. We also define the set
of boundary branches, which are branches that are connected
to at least one boundary bus, i.e.:

∂E(Ḡ) = {(i, j) ∈ E(G) : i ∈ ∂Ḡ or j ∈ ∂Ḡ}.

Also, we define the interior measurement of Ḡ to be the
measurements in Ḡ that are not on the boundary buses or
boundary branches of Ḡ.

Attacks on sub-grids can be hidden in its neighborhood,
or localized, in the following sense.

Proposition 1 (Attack Localization): Let G be a grid and
let σ be an admissible assignment to all its variables. Let Ḡ

be a subgraph of G. Suppose σ′ is another assignment on G
that satisfies the following three conditions:

1) σ and σ′ agree on all the state and measurement
variables outside of Ḡ, i.e.:

σ|G\Ḡ = σ′|G\Ḡ,

where σ|G means the restriction of σ on G.
2) σ and σ′ agree on the state variables on the boundary

of Ḡ, i.e.:

∀i ∈ ∂B(Ḡ), σ(vi) = σ′(vi) and σ(θi) = σ′(θi).

3) σ′|Ḡ is an admissible model for the subgrid Ḡ.

Then σ′ is also an admissible model for G.
To verify this fact, one only needs to check all the power

flow equations, as described in the previous section. As a
result, if an attacker only changes the measurement variables
within a sub-grid while keeping the states on its boundary
unchanged, then the attack is hidden in the sub-grid.

Now the question is, how large is the sub-grid that can
hide an attack? In the case of unconstrained measurements,
this is simple to characterize.

Definition 11 (Measurement Closure): Let z be a mea-
surement in a grid G. Write X(z) to denote the state
variables that appear in the power flow/injection equations
for z. The measurement closure of z is defined as

MC(z) = {z′ ∈ Z(G) : X(z) ∩X(z′) 6= ∅}.

Namely, the measurement closure of z is the set of all
measurements that share state variables with z in their power
flow/injection equations.

Definition 12 (Sub-Grid Masks): Let G be a grid and Za

be a set of measurements in G. A sub-grid mask on Za is a
sub-grid Ḡ such that⋃

z∈Za

MC(z) ⊆ Z(Ḡ).

Namely, the measurement closure of all measurements in Za

has to be contained in the sub-grid mask. The minimal sub-
grid mask is then defined as:

MS(Za) =
⋂
{Ḡ ⊆ G :

⋃
z∈Za

MC(z) ⊆ Z(Ḡ)},

which is simply the intersection of all sub-grid masks.
In the case of a single bus or branch, the minimal sub-

grids are as shown in Figure 1. For a bus, the minimal sub-
grid includes its immediate neighbor buses. For a branch, it
includes the terminal buses of the branch and the neighbors
of these buses. Note that the minimal sub-grid mask of a
branch is different from the minimal sub-grid that contains
it, which is simply the branch itself with the buses that it
connects.



Fig. 1. Minimal sub-grids that can hide attacks. Left is the case of attack
on a branch. Right is the case of attack on a bus.

C. Symbolic Propagation

Given that local sub-grids can hide attacks, we should start
our analysis on the minimal sub-grid mask over the targeted
measurements. In the unconstrained case, this is already
sufficient – we only need to find the consistent values of all
measurements in the sub-grid, and keep the state variables on
the boundary of the sub-grid unchanged. However, if some
measurements are constrained, we may need to incrementally
expand the sub-grid.

We now describe the full algorithm. Suppose the goal is
to attack some measurement z. We perform the analysis in
the following way:

1) We start with the minimal sub-grid mask over z, Ḡ =
MS(z).

2) We use an SMT solver to search for an FDI attack
vector that manipulates the measurements with in Ḡ,
while keeping the value of the state variables on the
boundary unchanged. Note that the attack vector needs
to respect the constraints on the measurements in Ḡ,
if there is any. The full formula is given below in
Definition 13. If we have successfully found an attack
vector, then terminate the search.

3) If the formula in the previous step is not satisfiable,
we choose a constrained measurement z on either the
boundary buses or the boundary branches, and expand
Ḡ to be Ḡ ∪ MS(z), and repeat from the previous
step. Note that this set of constrained measurements is
always nonempty, because otherwise we would have
found a solution in the previous step.

We now focus on two details in the algorithm: the formula
we solve in each round, and the termination criteria.

We say an FDI attack vector is masked by a sub-grid, if
it does not change the values of the state variables on the
boundary of the sub-grid. Formally:

Definition 13 (Masked FDI Attacks): Let Ḡ be a sug-grid
of G. Let σ be an admissible assignment of Ḡ. For each bus
i ∈ ∂Ḡ, we write σ(vi) = avi and σ(θi) = aθi to denote
the values that are assigned to the state variables on Bus i
under σ. The following formula defines the set of FDI attack

vectors that are masked by Ḡ and σ:

fdiḠ,σε,τ (~z) :=

∃~x
(
estε(~z, ~x) ∧monτ (~z, ~x) ∧ con(~z)

∧
∧
i∈∂Ḡ

(xvi = avi ∧ xθi = aθi )
)

where xvi and xθi are components of ~x. estε, monτ , and con
follow the definitions in Section III. In words, the formula
defines the set of measurements that can pass the monitoring
mechanism, satisfy all the constraints on the measurements,
and most importantly, can not be distinguished from σ by
monitoring on measurements outside Ḡ.

To describe the termination criteria, we need to define one
more structure on the grid.

Definition 14 (Elastic Boundary Buses): Let i be a bus on
∂Ḡ. We say i is an elastic boundary bus in Ḡ if

1) The measurements on i are not constrained.
2) For any branch (i, j) ∈ E(Ḡ), the measurements on

(i, j) are not constrained.
The importance of elastic boundary buses is that they define
the boundary of a sub-grid mask.

Proposition 2: Suppose all boundary buses of Ḡ are elas-
tic, then Ḡ is a sub-grid mask for its interior measurements.

Proof: Suppose z is an interior measurement on a bus
i that is connected to a boundary bus j. Since j is elastic,
there is no constraint on the branch (i, j) or the bus j.
Consequently, for any value of the state variable on i, we
can set the measurements on (i, j) to be a consistent value,
without changing the state variable values on the boundary
bus j. Following Proposition 1, any attack on i can be
localized.

Consequently, when we have a sub-grid with elastic
boundaries, we can terminate the propagation and obtain an
attack vector. This serves as the termination criteria for the
symbolic propagation algorithm. Algorithm 1 describes the
full algorithm.

Algorithm 1: Symbolic Propagation
input : Power grid G, ε, τ , target measurement z0.
output: An attack vector.

1 Ḡ← the minimal sub-grid mask MS(z0);
2 σ ← vector of state estimation on the relevant variables;
3 while not all boundary buses are elastic do
4 if fdiḠ,σε,τ (~z) is satisfiable then
5 return solution of the formula;
6 else
7 i← a non-elastic boundary bus in B(Ḡ);
8 Ḡ← Ḡ ∪MS(Z(i)) ;
9 end

10 end

V. EXPERIMENTS

Standard benchmarks for power grid analysis are the IEEE
14-Bus, 30-Bus, 157-Bus, and 300-Bus benchmarks [1]. To



best evaluate the proposed techniques, we summarized the
parameter characteristics in the benchmarks and generated a
large number of random grids, so that we can easily control
different parameters such as degrees, measurements under
constraints, etc. All experiments are conducted on a machine
of 1.8Ghz Intel i5 core and 8GB RAM.1

Fig. 2. Effect of Constraint Types on Attack Difficulty

First of all, because we analyze localized attacks, the raw
size of the full grid does not affect scalability. In Table I we
show that the running time on a 200-bus grid and a 500-
bus grid is not distinguishable if all other parameters are the
same. Thus we perform most of the experiments on random
sub-grids within 500-bus grids.

1The test code and benchmarks are available at http://scungao.
github.com/powersystem

We observe the following facts in the experiments, which
can be reflected in the diagrams in Figure 2 to Figure 3.

1. Experiments show that there is a big difference between
constraining measurements on buses and branches. In Figure
2, we show the running time of three cases: all constrained
measurements are on branches, on buses, or a mixture of
the two. The solver can scale well when all constrained
measurements are on branches. The hardest problems come
from when all constrained measurements are on buses. The
reason for this result is that the constraints on buses involve
all the state and measurement variables on its neighbor buses,
while to handle a branch we only need to involve its terminal
buses. It is especially difficult to find attack vectors when
all the constrained buses are immediate neighbors, in which
case all nonlinear constraints share many variables. This
suggests that, from a defense perspective, it is more effective
to apply additional monitoring on buses, especially on buses
that directly connect to each other.

T D #K #M #CM #V #NL TIME(s) δ

U 2 1 8 4 8 30 0.014 0.1
U 2 1 8 4 8 30 4.851 0.01
U 2 3 24 12 18 100 0.028 0.1
U 2 3 24 12 18 100 5.012 0.01
U 3 1 28 4 10 40 1.291 0.1
U 3 2 36 8 18 90 25.875 0.1
U 3 2 36 8 18 90 60.172 0.01
U 3 3 48 12 26 140 310.212 0.1
U 3 3 48 12 26 140 912.318 0.01
U 4 1 8 4 12 50 0.362 0.1
U 4 2 54 8 22 110 timeout 0.1
M 2 2 8 2 5 9 2.093 0.1
M 2 4 20 8 14 36 96.517 0.1
M 2 5 28 10 32 90 108.075 0.1
M 2 6 32 14 43 135 162.204 0.1
M 3 2 34 4 18 60 5.331 0.1
M 3 3 42 8 24 110 118.814 0.1
M 4 4 48 12 34 160 timeout 0.1
R 2 1 8 2 5 9 0.047 0.01
R 3 4 32 8 14 36 0.541 0.01
R 3 10 60 20 32 90 6.251 0.01
R 3 15 90 30 43 135 7.069 0.01
R 4 4 32 8 14 36 0.821 0.01
R 5 4 32 8 14 36 1.108 0.01

TABLE I
EXPERIMENTAL DATA. “T” IS THE TYPE OF CONSTRAINTS ON

MEASUREMENTS: “U” MEANS “BUS ONLY”, “M” MEANS “MIXED

BUSES AND BRANCHES”; “R” MEANS “BRANCH” ONLY. “D” IS THE

DEGREE OF BUSES IN THE GRID. “#K” IS THE NUMBER OF PROPAGATION

STEPS.“#M” IS THE NUMBER OF MEASUREMENTS INVOLVED IN THE

SUB-GRID. “#CM” IS THE NUMBER OF CONSTRAINED MEASUREMENTS;
“#V” IS THE NUMBER OF VARIABLES IN THE SMT FORMULA; “#N” IS

THE NUMBER OF NONLINEAR CONSTRAINTS IN THE FORMULA; “δ” IS

THE NUMERICAL ERROR IN SOLVER.

2. The degree of the buses affects running time greatly,
but only when measurements on buses are constrained. The
reason is as follows. When the constrained measurements
are on branches only, then the degree of each bus does not
matter, because each power flow equation only involves two

http://scungao.github.com/powersystem
http://scungao.github.com/powersystem


buses. When buses are constrained, then higher degree results
in much more complex formulas. We can see from Figure
2 that the running time grows roughly exponentially with
respect to the degree when buses are constrained, while no
such effects occur when only branches are constrained. Note
that in practice, power grids typically contain buses of degree
2 to 3. Thus the running time here indicates applicability to
realistic problems.

3. Running time grows as a monotonic function of propa-
gation depth. In each propagation depth, more constraints and
variables are added to the formula. The size of the formula
never decreases (so there is no backtracking in search). In
Figure 3, we see that the number of nonlinear constraints
increases more rapidly when the degree of the buses is high.

4. The SMT solver we use implements δ-complete de-
cision procedures that allow δ-bounded numerical errors in
its solutions. The running time of the solver is affected by
the delta of choice. In Figure 3 we see how running time
increases with respect to delta. In fact, this figure shows
the running time on formulas with branch only constraints.
In formulas with bus constraints, the run time increases
exponentially with respect to δ.

Fig. 3. Size of Nonlinear Constraints and Effects of Delta

Effects of Numerical Errors in the Solver. A main under-
lying principle for solving the nonlinear formulas is that one
needs to aim for delta-decisions. While this is imprecision in
the solver, it becomes a valuable feature in the vulnerability
analysis context. When a formula is returned as delta-

satisfiable, it means that the condition is solvable under some
delta-bounded perturbations of the original formula. Since
measurements contain errors, these answers take into account
of such imprecision in measuring. From each solution, we
can also calculate the amount of perturbation that an attacker
imposes to compromise the system and take that into account
when designing the defense mechanism. These are problems
that would not be approachable by an exact solver, let along
the limited scalability of exact solvers in this context.

VI. CONCLUSION

We demonstrated that it is possible to perform automated
vulnerability analysis of AC state estimation under con-
strained false data injection attacks. We showed how to
encode the problems as SMT problems and solve them with
efficient nonlinear solvers. We proposed the new technique
symbolic propagation to localize the analysis.

There are many possible extensions of this work. The
underlying technique for vulnerability analysis could also
be applied to solving distributed power flow and distributed
state estimation. We also aim to develop analysis method
that combine program analysis and the proposed methods,
to defend against attacks similar to the Stuxnet attack.
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