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1 Introduction

1.1 Overview

Cyber-Physical Systems (CPS) are systems that integrate digital computation with the physical environment. They
include almost every complex piece of machinery around us, from airplanes to nuclear plants to cardiac pacemakers.
In these systems, computation units process information from a physical plant to control it in real-time. Despite
their ubiquitous and safety-critical applications, the search for systematic theories and techniques for the analysis and
design of these systems has seen limited success. The main difficulty comes from their tight integration of discrete
and continuous components, as studied in the area of hybrid systems. Formal verification of hybrid systems has
appeared fundamentally unattainable. Theoretically, verifying safety of simple hybrid systems is highly undecidable.
Practically, the lack of powerful reasoning engines in this domain prevents the use of advanced formal verification
techniques. My thesis develops a framework to overcome these barriers.

Theoretical negative results on verification of hybrid systems mostly refer to the limitations of precise and symbolic
algorithms. We show that an appropriate relaxation leads to strong decidability and complexity results, both for
the decision problems of the underlying logic formulas and the verification problems. The key step is to develop a
notion of numerical approximations in the standard decision problems. We define the δ-decision problem, where δ
is any positive rational number: for a formula ϕ, we ask whether ϕ is true or a δ-perturbation of ϕ is false (or the
other way around). Here, a δ-perturbation of a formula is a syntactic variant of it, obtained by modifying some of
its constant terms up to δ. The key theorem is that the δ-decision problem is decidable for sentences with bounded
quantifiers in first-order theories over the reals with arbitrary Type 2 computable functions, which are essentially
“numerically computable” real functions. This notion of numerical computability has been studied extensively in
the field of computable analysis, which applies to most well-known continuous functions including transcendental
functions and solution functions of differential equations. The δ-decidability results stand in sharp contrast with the
well-known undecidability of first-order formulas over the reals with trigonometric functions.

We then show that δ-decidability leads to a new framework for hybrid system verification. We describe hybrid
automata using first-order formulas with Type 2 computable functions, which are expressive enough for almost all
systems of practical relevance. We define the notion of δ-reachability for hybrid automata using δ-perturbations
on first-order formulas. The decidability and complexity results of the logic formulas then transfer to bounded
δ-reachability problems of hybrid automata. Again, such results bypass the well-known high undecidability of reach-
ability for simple hybrid systems. In practice, the new framework allows us to exploit the full power of numerical
methods in decision problems and formal verification. We define the notion of δ-complete decision procedures, which
serves as a performance requirement for using numerically-driven procedures in formal verification. We show an anal-
ysis of the powerful constraint solving framework Interval Constraint Propagation (ICP), and formalize conditions



under which it is δ-complete. We have built a practical tool dReal combining ICP in the DPLL(T) framework. It has
successfully solved logic formulas with hundreds of nonlinear differential equations or transcendental functions. This
tool is the backend of a hybrid system verification tool dReach, which has efficiently handled real-world nonlinear
hybrid system models that are much beyond the reach of other existing tools.

I will sketch the main results in each part of the thesis. Section 2 contains theoretical results on δ-decidability over
the reals. Section 3 gives a framework for reachability analysis of hybrid systems based on δ-decidability. Section 4
gives the framework of δ-complete decision procedures as the underlying solving engine. Section 5 introduces the
practical tools that implement the framework.

1.2 Related Work

Safety Verification of Hybrid Automata. Hybrid automata are infinite-state systems that combine discrete and
continuous parts, it is not surprising that their safety verification problems can be very difficult. Along with the first
definition of hybrid automata in [4, 3], it is already shown that the reachability problem for simple classes of hybrid
automata, with only constant-rate continuous dynamics, is undecidable. In fact, it can be shown that reachability
problems for piecewise-linear systems are already hard enough to encode any problem in the analytic hierarchy [10].
Such very strong negative results seem to indicate that formal verification of realist ic hybrid automata is inherently
impossible. Thus, existing approaches have either focused on the simplest decidable classes (timed automata [4]),
which can be reduced to discrete systems, or heuristic algorithms for some undecidable classes. We can categorize
these approaches based on whether they focus on computing representations of the sets of the reachable states
(model-theoretic) or constructing logic proofs of correctness (proof-theoretic).

On the model-theoretic side, Reachable Set Computation methods compute reachable states of a hybrid automaton
to decide if the safety properties can be falsified. They key challenge is to find suitable representations for the
set of reachable states and efficient algorithms for manipulating them. The tool HYTECH was the first model
checker to implement symbolic reachability analysis for hybrid systems [5]. It is based on representing the reachable
states by polyhedra, where a polyhedron is represented by a conjunction of linear inequalities. The models are
restricted to the class of hybrid automata with constant dynamics. The approach is then generalized to handle
linear differential equations, as implemented by the tools CheckMate [12] and d/dt [6], using polyhedra to compute
flowpipe approximations. It is worth noting that the complexity of operations on polyhedra is usually exponential
in the number of dimensions, which makes it hard for the reachable set computation to scale. Recent progress
involves using Zonotopes and support functions [19, 20], which leads to more efficient algorithms for handling linear
systems. On the other hand, the main drawback of the method is the difficulty with handling logic operations in
the discrete jumps using the geometric approximations. In general, explicit reachable set computation has been
shown possible only for very limited classes of hybrid automata. On the proof-theoretic side, Deductive Verification
methods uses theorem provers for proving correctness. Such methods are based on identifying inductive invariants,
and avoid the iterative calculation of the reachable state sets and is not limited to linear hybrid automata. The
tool KEYMAERA [28], based on Differential Dynamic Logic [27, 25, 26], provides support for constructing proofs for
correctness by certifying inductive invariants. The proof engine relies on external symbolic algorithms for quantifier
elimination in real arithmetic, which puts a constraint on the overall scalability and expressiveness. In most cases such
inductive invariants need to be suggested by the user. Automated generation of inductive invariants has remained
an active area of research [30, 30].

Decision Procedures over the Reals. While efficient algorithms [14] exist for deciding SMT problems with
only linear real arithmetic, practical problems normally contain nonlinear polynomials, transcendental functions,
and differential equations. Solving formulas with these functions is inherently intractable. Decision algorithms [13]
for formulas with nonlinear polynomials have very high complexity [11]. A more fundamental problem is the lack of
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expressiveness: many problems in the intended domains of application cannot even be expressed in the language of
real-closed fields. When the sine function is involved, the SMT problem is undecidable, and only partial algorithms
can be developed [7, 2]. The symbolic approaches include Cylindrical Decomposition [13], with significant recent
improvement [24, ?], and Gröbner bases [29]. A drawback of symbolic algorithms is that it is restricted to arithmetic,
namely polynomial constraints, with the exception of [1]. On the other hand, many practical solvers incorporate
scalable numerical computations. Examples of numerical algorithms that have been exploited include optimization
algorithms [9, 23], interval-based algorithms [16, 15, 18], Bernstein polynomials [22], and linearization algorithms [17].
In these existing approaches, the numerical algorithms are used as partial heurstics, and there is no framework for
comparing their power or formulating correctness guarantees.

2 δ-Decidability over the Reals

Tarski’s celebrated result that the first-order theory of real arithmetic is decidable has had a profound impact on
automated theorem proving, and has generated much attention in application domains such as formal verification,
control theory, and robotics. The hope is that practical problems can be encoded as first-order formulas and au-
tomatically solved by decision procedures for the theory. However, in spite of extensive research in optimizing the
decision algorithms, there is still a wide gap between the state-of-the-art and the majority of problems in practice.
One reason is the procedures’ high computational complexity: general quantifier elimination, even restricted to a
linear signature, has a doubly exponential lower-bound. A more fundamental problem is the lack of expressiveness:
many problems in the intended domains of application cannot even be expressed in the language of real-closed fields.
Problems from formal verification and control design can appear much beyond what can be currently solved, because
of the use of differential equations, alternating quantifiers, as well as their sheer scale. It is well known that even the
set of Σ1 sentences in a language extending real arithmetic with the sine function is already undecidable. This seems
to indicate that developing general logic-based automated methods in these domains is at its core impossible. Our
goal is to show that a slight change of perspective provides a completely different, and much more positive, outlook.

It is important to note that the theoretical negative results only refer to the problem of deciding logic formulas
symbolically and precisely. In this setting, the numerical computability of real functions remains mostly unexploited.
This hardly reflects the wide range of solving techniques in practice. For instance, in the Flyspeck project, the
nonlinear formulas are proved using various numerical optimization techniques, including linear programming, interval
analysis, and Bernstein approximations. In the field of formal verification of real-time systems, a recent trend in
developing decision solvers that incorporate numerical methods has also proved very promising. It is natural to
ask whether such practices can be theoretically justified in the context of decision problems for first-order theories.
Namely, can we give a characterization of the first-order formulas that can be solved using numerically-driven
procedures, and if so, bound the complexity of these procedures? Can we formulate a framework for understanding
the guarantees that numerically-driven decision procedures can provide? Can we provide general conditions under
which a practical verification problem has a satisfactory solution? We answer these questions affirmatively. The key
is to shift to a δ-relaxed notion of correctness, which is more closely aligned with the use of numerical procedures.

An informal description of what we can show is as follows. In a very general signature that contains all the
aforementioned real functions, there exists an algorithm such that given an arbitrary sentence ϕ involving only
bounded quantifiers, and an arbitrary small numerical parameter δ, one of the following decisions is returned:

• ϕ is true;

• The “δ-strengthening” of ϕ is false.

The δ-strengthening of a formula, defined below, is a numerical perturbation which makes it slightly harder for the
formula to be true. For example, the strengthening of ∃x ∈ I. x > 0, where I is the bound on the quantifier, is
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∃x ∈ I. x > δ. Thus the algorithm reports either that the given formula is true, or that some small perturbation
makes it false. These two cases are not mutually exclusive, and in the “grey area” where both cases hold the algorithm
is allowed to return either value. We refer to this problem (as well as the dual problem defined below using the δ-
weakening of formulas) as the “δ-relaxed decision problem,” or simply the “δ-decision problem.” The restriction to
bounded quantifiers is reasonable, since in practical problems real-valued variables are typically considered within
some range.

Here is another way of thinking about our main result. Given a small δ, we can consider the set of first-order
sentences with the property that their truth values remain invariant under δ-strengthening (or δ-weakening). Such
sentences can be called “δ-robust,” in that they do not fall into the “grey area” mentioned in the last paragraph.
We believe that, in situations like the Flyspeck project where numerical methods are used, it is implicitly assumed
that the relevant assertions have this property. Our algorithm, in particular, decides the truth of bounded δ-robust
sentences in a general signature.

Moreover, we show that the δ-decision problems reside in reasonable complexity classes. For instance, if the
signature is given by extending arithmetic with exp and sin, the δ-decision problem for bounded Σ1-sentences is
“only” NP-complete. This should be compared with the undecidability of sentences in this class in the ordinary
setting. As another example, the δ-decision problem for arbitrarily-quantified bounded sentences with Lipschitz-
continuous ordinary differential equations is PSPACE-complete. The fact that this complexity is not higher than that
of deciding quantified Boolean formulas is striking.

The “general signature” we mentioned above refer to arbitrary Type 2 computable functions. We now formally
state our results. Let F be any collection of Type 2 computable real functions. First, there exists an algorithm
such that given any LF -sentence ϕ containing only bounded quantifiers, and any positive rational number δ, decides
the δ-relaxed decision problem. Secondly, suppose all the functions in F are in a Type 2 complexity class C (closed
under polynomial-time reduction), then the δ-relaxed decision problem for Σn-sentences in LF resides in (ΣP

n )C.
Moreover, the relaxations are necessary. Without either boundedness or δ-relaxation, the general problem would
remain undecidable.

2.1 Computable Functions over the Reals

We can encode any real number as an infinite sequence of rational numbers. We write the set of dyadic rational
numbers as D = {m/2n : m ∈ Z, n ∈ N}.

Definition 2.1 (Names). For each real number x, a name of x is any function φ : N→ D that binary-converges
to x. That is, ∀n ∈ N, |φ(n)− x| ≤ 2−n. Note that this representation is not unique. We write CFx to denote the set
of all φs that binary-converge to x. A real number x is computable, if there exists a computable function φ ∈ CF(x).

We can compute a real function f : R → R if there is a machine M that, given the representation of any
argument x ∈ R of the function, computes the representation of its value f(x). Such computation can be realized
by function-oracle machines in the following way. The input x is given to M by some φ ∈ CFx as a function oracle,
and the precision 2−n is given as an integer n in unary notation (a string 0n) as an input to M . M computes f(x)
by repeating two steps: first, it decides the precision of the input needed for producing an output of the desirable
precision 2−n; second, it queries the function oracle to obtain an approximation of the input and compute the output.
Namely, M queries the oracle for φ(m), which by definition satisfies |φ(m) − x| ≤ 2−m and computes an output
d ∈ Q with |d− f(x)| ≤ 2−n, using φ(m). This is the intuition behind the following formal definition of computable
real functions.

Definition 2.2 (Computable Real Functions). A real function f : R → R is computable, if there is a function-
oracle Turing machine M such that for every x ∈ R and every φ ∈ CFx, given any i ∈ N, the machine uses φ as an
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oracle, and n as the input, and computes a rational number Mφ(i) ∈ Q, such that |Mφ(i) − f(x)| ≤ 2−i. In other
words, M computes a function ψ that Cauchy-represents f(x). We say a function f : [a, b]→ R is computable over
[a, b] ⊆ R if the above conditions hold for all x ∈ [a, b].

A most important property of computable functions is that they must have a computable modulus of continuity.
Basically, if a function has a computable uniform modulus of continuity, then fixing any error bound 2−i, we can
compute a global error bound 2−mf (i) such that using any 2−mf (i)-approximation of x, f(x) can be obtained with error
smaller than 2−i. Most standard real functions are Type 2 computable, including: arithmetic, absolute value function,
min and max, polynomials with computable coefficients, exponential, trigonometric, square root, and logarithm
functions, and solution functions of Lipschitz-continuous ordinary differential equations are Type 2 computable.

Complexity Classes of Type 2 Functions. Let the ordinary complexity classes such as P,NP,ΣP
k ,PSPACE for

decision problems be defined in the standard way. Complexity of real functions is usually defined over compact
domains. Without loss of generality, we consider functions over [0, 1]. Intuitively, a real function f : [0, 1] → R is
(uniformly) P-computable (PSPACE-computable), if it is computable by an oracle Turing machine Mf that halts in
polynomial-time (polynomial-space) for every i ∈ N and every ~x ∈ dom(f). Formally, we use the following standard
definition:

Definition 2.3. A real function f : [0, 1]n → R is in PC[0,1] (resp. PSPACEC[0,1]), iff there exists a representation
(mf , θf ) of f such that mf is a polynomial function, and for any d ∈ (D ∩ [0, 1])n, e ∈ D, and i ∈ N, θf (d, i) is
computable in time (resp. space) O((len(d) + i)k) for some constant k.

Most common real functions reside in PC[0,1]: absolute value, polynomials, binary max and min, exp, and sin are
all in PC[0,1]. It has been that solutions of Lipschitz-continuous differential equations are PSPACEC[0,1]-complete.

2.2 LRF -Formulas

We consider first-order formulas with Type 2 computable functions interpreted over the reals. We write F to denote
an arbitrary collection of symbols representing Type 2 computable functions over Rn for various n. We always assume
that F contains at least the constant 0, unary negation, addition, and the absolute value. (Constants are seen as
constant functions.) Let LF be the signature 〈F , >〉. LF -formulas are always evaluated in the standard way over
the corresponding structure RF = 〈R,F , >〉.

It is not hard to see that we only need to use atomic formulas of the form t(x1, ..., xn) > 0 or t(x1, ..., xn) ≥ 0,
where t(x1, ..., xn) are built up from functions in F . This follows from the fact that t(~x) = 0 can be written as
−|t(~x)| ≥ 0, t(~x) < 0 as −t(~x) > 0, and t(~x) ≤ 0 as −t(~x) ≥ 0. We then take expressions s < t and s ≤ t to
abbreviate t− s > 0 and t− s ≥ 0, respectively. Moreover, when a formula is in negation normal form, the negations
in front of atomic formulas can be eliminated by replacing ¬t(~x) > 0 with −t(~x) ≥ 0, and ¬t(~x) ≥ 0 with −t(~x) > 0.

In general, to avoid extra preprocessing of formulas, we give an explicit definition of LF -formulas as follows.

Definition 2.4 (LF -Formulas). Let F be a collection of Type 2 functions, which contains at least 0, unary negation
-, addition +, and absolute value | · |. We define:

t := x | f(t(~x)), where f ∈ F , possibly constant;

ϕ := t(~x) > 0 | t(~x) ≥ 0 | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃xiϕ | ∀xiϕ.

In this setting ¬ϕ is regarded as an inductively defined operation which replaces atomic formulas t > 0 with −t ≥ 0,
atomic formulas t ≥ 0 with −t > 0, switches ∧ and ∨, and switches ∀ and ∃. Implication ϕ1 → ϕ2 is defined
as ¬ϕ1 ∨ ϕ2. We use the notation of bounded quantifiers, defined as ∃[u,v]x.ϕ =df ∃x.(u ≤ x ∧ x ≤ v ∧ ϕ) and
∀[u,v]x.ϕ =df ∀x.((u ≤ x ∧ x ≤ v)→ ϕ). We say a sentence is bounded if it only involves bounded quantifiers.

5



Expressiveness of LRF . Many standard problems related to ODE systems can be easily generalized and encoded
in LRF . They motivate the development of decision procedures for the theory. We give encoding for generalizations
of Initial Value Problems, Boundary Value Problems, Differential-Algebraic Equations, etc.

2.3 δ-Decidability

We define δ-weakening and δ-strengthening of bounded LF -sentences, which explicitly introduce syntactic perturba-
tions in a formula. They are used to formalize the notion of δ-relaxed decision problems for LF -sentences.

Definition 2.5 (δ-Variants). Let δ ∈ Q+ ∪ {0}, and ϕ a bounded LF -sentence of the form

QI11 x1 · · ·QInn xn.ψ[ti > 0; tj ≥ 0],

where i ∈ {1, ...k} and j ∈ {k + 1, ..., j}. The δ-strengthening ϕ+δ of ϕ is defined to be the result of replacing each
atomic formula ti > 0 by ti > δ and each atomic formula tj ≥ 0 by tj ≥ δ, that is,

QI11 x1 · · ·QInn xn.ψ[ti > δ; tj ≥ δ],

where i ∈ {1, ...k} and j ∈ {k + 1, ..., j}. Similarly, the δ-weakening ϕ−δ of ϕ is defined to be the result of replacing
each atomic formula ti > 0 by ti > −δ and each atomic formula tj ≥ 0 by tj ≥ −δ, that is,

QI11 x1 · · ·QInn xn.ψ[ti > −δ; tj ≥ −δ].

We say that a sentence is δ-robust if its truth value remains invariant under δ-weakening, namely, if ϕ−δ → ϕ.
We say ϕ is robust if it is δ-robust for some δ ∈ Q+.More precisely, we can say that a formula ϕ is robust under
δ-weakening if it has this property, and define the analogous notion of being robust under δ-strengthening. The two
notions have similar properties; for simplicity, we will restrict attention to the first notion below. By Proposition ??,
we always have ϕ→ ϕ−δ, so ϕ is δ-robust if and only if we have ϕ↔ ϕ−δ. Since ϕ−δ → ϕ is equivalent to ¬ϕ−δ ∨ϕ,
saying that ϕ is robust is equivalent to saying that either ϕ is true or ϕ−δ is false. Intuitively, this means that either
ϕ is true, or “comfortably” false in the sense that no small perturbation makes it true.

Main Theorem. Our main theorem is the following.

Theorem 2.6 (δ-Decidability). There is an algorithm which, given any bounded LF -sentence ϕ and δ ∈ Q+, correctly
returns one of the following two answers:

• “True”: ϕ is true.

• “δ-False”: ϕ+δ is false.

Note that the two cases can overlap. If ϕ is true and ϕ+δ is false, then the algorithm is allowed to return either
one. The proof idea is that for any formula ϕ, the strictification of ϕ is equivalent to the formula α(ϕ) > 0. Whether
this holds cannot, in general, be determined algorithmically, But given a small δ, we can make a choice between the
overlapping alternatives α(ϕ) > 0 and α(ϕ) < δ, and this is enough to solve the relaxed decision problem. To prove
the main theorem, we need the following definitions and lemmas. First, any F can be extended it as follows.

Definition 2.7 (m-Extension). Let F be a collection of computable functions over reals. We define the m-extension
of F , written as Fm, to be the closure of F with the following functions:

• Binary min and max: min(·, ·),max(·, ·);
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• Bounded min and max:
min{t(~x, ~y) : y1 ∈ [u1, v1], ..., yn ∈ [un, vn]},

max{t(~x, ~y) : y1 ∈ [u1, v1], ..., yn ∈ [un, vn]},

where ui and vi denote arbitrary LFm-terms that do not involve yi.

It is a standard result in computable analysis that applying minimization and maximization over a bounded
interval preserves computability. (This is studied in detail in Chapter 3 of [21].) Thus all functions in Fm are
computable. We can write the bounded min and max as min~x∈D(t(~x, ~y)) and max~x∈D(t(~x, ~y)) for short, where
D = [u1, v1] × · · · × [un, vn]. For technical reasons that will become clear in Section 2.4, we interpret [u, v] as [v, u]
when v < u; one can rule out this interpretation by adding u ≤ v as an explicit constraint in the formula. We define
a notion that allows us to switch between strict and nonstrict inequalities in the δ-decision problem.

Definition 2.8 (Strictification). Suppose ϕ is the formula

~Q
~I~x.ψ[t1 > 0, ..., tk > 0; tk+1 ≥ 0, ..., tm ≥ 0].

We say ϕ is strict (resp. nonstrict), if m = k (resp. k = 0), i.e., all the inequalities occurring in ϕ are strict (resp.
nonstrict). The strictification of ϕ is defined to be

st(ϕ) : ~Q
~I~x.ψ[t1 > 0, ..., tk > 0, tk+1 > 0, ..., tm > 0],

that is, the result of replacing all the nonstrict inequalities by strict ones. The destrictification of ϕ is

de(ϕ) : ~Q
~I~x.ψ[t1 ≥ 0, ..., tk ≥ 0, tk+1 ≥ 0, ..., tm ≥ 0],

this is, the result of replacing all strict inequalities by nonstrict ones.

Note that the bounds on the quantifiers are not changed in the definition. The following fact follows directly
from the definition.

Proposition 2.9. We have

• st(ϕ)→ ϕ and ϕ→ de(ϕ).

• (Duality) st(¬ϕ) is equivalent to ¬de(ϕ).

The key lemma establishes that any bounded LF -sentence can be expressed as an atomic formula in the extended
signature LFm .

Lemma 2.10. Let ϕ be a bounded LF -sentence. There is an LFm-term α(ϕ) that satisfies:

• de(ϕ)↔ α(ϕ) ≥ 0, and st(ϕ)↔ α(ϕ) > 0;

• de(ϕ+δ)↔ α(ϕ) ≥ δ, and st(ϕ+δ)↔ α(ϕ) > δ.

Now, the idea of the proof for the main theorem is as follows. For any formula ϕ, the strictification of ϕ is
equivalent to the formula α(ϕ) > 0. Whether this holds cannot, in general, be determined algorithmically, But given
a small δ, we can make a choice between the overlapping alternatives α(ϕ) > 0 and α(ϕ) < δ, and this is enough to
solve the relaxed decision problem.
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Corollaries of the main theorem. We have the following corollaries that easily follow from the main theorem.

Corollary 2.11. There is an algorithm which, given any bounded ϕ and δ ∈ Q+, correctly returns one of the
following two answers:

• “δ-True”: ϕ−δ is true.

• “False”: ϕ is false.

Corollary 2.12 (Robustness implies decidability). There is an algorithm that, given δ ∈ Q+ and a bounded δ-robust
ϕ, decides whether ϕ is true or false.

Corollary 2.13. Let L be a class of bounded LF -sentences. Suppose it is undecidable whether an arbitrary sentence
in L is true. Then it is undecidable, given any δ ∈ Q+, whether an arbitrary bounded L-sentence is δ-robust.

This can be contrasted with the simple fact that if RF has a decidable theory, then it is decidable whether any
bounded LF -sentence is robust, since the conditions can be expressed by just another bounded LF -sentence.

We can contrast the above results with the following negative results, to show that both the boundedness and
δ-relaxation are necessary for decidability. We allow the signature LF to be arbitrary Type 2 computable functions,
then without either boundedness or robustness, LF -sentences are undecidable.

Proposition 2.14. There exists F such that it is undecidable whether an arbitrary quantifier-free sentence (and thus
trivially bounded) in LF is true.

The proof of this proposition involves adding countably many constant symbols to the language, one for each ai.
Alternatively, it is not hard to define a single computable function g : Q→ R such that for each i ∈ N, g(i) = ai, by
interpolating outputs linearly for inputs between integer values.

Proposition 2.15. There exists F such that it is undecidable whether an arbitrary δ-robust quantifier-free LF -
sentence is true.

2.4 Complexity Results

In this section we consider the complexity of the δ-decision problem for signatures of interest. In the proof of the main
theorem, we have established a reduction from the δ-decision problems of LF to computing the value of LFm -terms
with alternations of min and max. The complexity of computing such terms can be exactly characterized by the
min-max hierarchy over computable functions, as defined in [21].

First, we need the definition of Σk,C[0,1]-functions.

Definition 2.16 ([21]). For k ≥ 0, we say a real function f : [0, 1]→ R is in Σk,C[0,1] (resp. Πk,C[0,1]) if there exists
a representation (mf , θf ) of f , such that

1. The modulus function mf : N→ N is a polynomial, and

2. for all d ∈ D ∩ [0, 1] and all i ∈ N, |θf (d, n)− f(d)| ≤ 2−i, and the set Aθf = {〈d, e, 0i〉 : e ≤ θf (d, i)} is in Σk

(resp. Πk). (0i denotes the string of i zeros.)

Remark 2.17. Note that using membership queries to Aψ, we can easily (in polynomial-time) determine the value of
ψ(d, i). Thus by replacing the third condition with P or PSPACE, we obtain the definition of PC[0,1] and PSPACEC[0,1].
It is also clear that Σ0,C[0,1] = Π0,C[0,1] = PC[0,1].
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The key result as shown by Ko [21] is that, if f(x, y) is in PC[0,1], then maxx∈[0,1] f(x, y) is in NPC[0,1]:

Proposition 2.18 ([21]). Let f : [0, 1]n → R be a real function in PC[0,1]. Define g : [0, 1]m0 → R as

g(~x0) = max
~x1∈[0,1]m1

min
~x2∈[0,1]m2

· · · opt
~xk∈[0,1]mk

f(~x0, ~x1, ..., ~xk)

where opt is min if k is even and max if k is odd, and
∑k
i=0mi = n. We then have g ∈ Σk,C[0,1].

Following the definition of Σk,C[0,1]-classes, it is straightforward to obtain the decision version of this result, and
also to relativize to complexity classes other than PC[0,1].

Lemma 2.19. Suppose f : [0, 1]n → R is in complexity class C with a polynomial modulus function. Define
g : [0, 1]m0 → R as

g(~x0) = max
~x1∈[0,1]m1

min
~x2∈[0,1]m2

· · · opt
~xk∈[0,1]mk

f(~x0, ~x1, ..., ~xk)

where opt is min if k is even and min if k is odd, and
∑k
i=0mi = n. Then there exists a representation of g, (mg, θg),

such that the following problem is in (ΣP
k )C: given any d, e ∈ D and i ∈ N, decide if θg(d, i) ≥ e.

Now we are ready to state the complexity results for the δ-decision problems.

Theorem 2.20. Let F be a class of computable functions. Let S be a class of LF -sentences, such that for any ϕ in
S, the terms in ϕ[0,1] are computable in complexity class C where PC[0,1] ⊆ C ⊆ PSPACEC[0,1]. Then, for any δ ∈ Q+,

the δ-decision problem for bounded Σn-sentences in S is in (ΣP
n )C.

As corollaries, we now prove completeness results for signatures of interest.

Corollary 2.21. Let F be a set of P-computable functions (which, for instance, includes exp and sin). The δ-decision
problem bounded Σn-sentences in LF is ΣP

n -complete.

Corollary 2.22. Suppose F consists of Lipschitz-continuous ODEs over compact domains. The δ-decision problem
for bounded LF -sentences is PSPACE-complete.

2.5 δ-Complete Decision Procedures

We now focus on bounded existential formulas. They form the class of problems often referred to as the SMT
problems, whose detailed algorithms will be studied in Part III. This class of problems is a special case of the general
δ-decidability results we have obtained in the previous chapters. Yet, it is worthwhile to give alternative proofs in this
special case which do not rely much results in computable analysis and will also be useful for understanding practical
algorithms. We have defined δ-strengthening and δ-weakening of general first-order sentences. We put formulas in
normal forms that contains only inequalties. Yet in the case of Σ1-sentences, it will be shown that using equalities is
closer to the analysis of practical algorithms. Thus, we give a special definition for formulas using equalities in the
normal forms.

Definition 2.23 (δ-Weakening of Σ1-sentences). Let δ ∈ Q+∪{0} be a constant and ϕ be a Σ1-sentence in standard

form: ϕ := ∃~I~x.
∧m
i=1(

∨ki
j=1 fij(~x) = 0). The δ-weakening of ϕ defined as ϕδ := ∃~I~x.

∧m
i=1(

∨k
j=1 |fij(~x)| ≤ δ). Also,

a δ-perturbation is a constant vector ~c = (c11, ..., cmkm), cij ∈ R, satisfying ||~c|| ≤ δ, such that the ~c-perturbed form

of ϕ is given by: ϕ~c := ∃~I~x.
∧m
i=1(

∨k
j=1 fij(~x) = cij).

Definition 2.24 (Bounded δ-SMT in LRF ). Let F be a finite collection of Type 2 computable functions. Let ϕ be
a bounded Σ1-sentence in LRF in standard form. The bounded δ-SMT problem asks for one of the following either
unsat : ϕ is false, or δ-sat : ϕδ is true. When the two cases overlap, either decision can be returned.

Definition 2.25 (δ-Completeness). We say a procedure is δ-complete if it solves the δ-SMT problem correctly.
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3 Formal Verification of Hybrid Automata

There are two main difficulties in formal verification of hybrid systems. Theoretically, it is well known that the
safety verification problem for hybrid systems with very simple dynamics is highly undecidable. Consequently, a
unified framework for solving the reachability problem seems impossible, especially for nonlinear hybrid systems.
Some decidability results exist for restricted classes of nonlinear systems but they do not apply to the majority of
realistic systems. Practically, formal analysis of hybrid systems requires both numerical computation and logical
reasoning. A core requirement is the availability of efficient solving techniques for handling logical combinations of
assertions over the real numbers. To model physical laws and control systems, the logic formulas in question have
to contain various nonlinear real functions. The logical decision problem for such formulas is extremely hard. The
lack of efficient solving engines limits the scalability of existing verification techniques for hybrid systems. Advanced
verification techniques, which are successful in other domains such as hardware and software verification, are hard
to apply on hybrid systems.

We show that the framework of δ-decisions bring a new perspective on the problem. In practice, hybrid systems
interact with the physical world and it is impossible to avoid slight perturbations; they may come from lack of
precision in the sensors, errors in floating-point computation, physical disturbance in the environment, etc. Note
that such robustness problems can not be discovered by solving the standard reachability problem. Thus, we argue
that the notion of δ-reachability is not weaker, and in fact better suits the need of safety verification in practice.

3.1 Hybrid Automata and LRF -Representations

Hybrid automata are finite automata combined with dynamical systems. We first show that LRF -formulas can
concisely represent hybrid automata.

Definition 3.1 (LRF -Representations of Hybrid Automata). A hybrid automaton in LRF -representation is a tuple

H = 〈X,Q, {flowq(~x, ~y, t) : q ∈ Q}, {invq(~x) : q ∈ Q}, {jumpq→q′(~x, ~y) : q, q′ ∈ Q}, {initq(~x) : q ∈ Q}〉

where X ⊆ Rn for some n ∈ N, Q = {q1, ..., qm} is a finite set of modes, and the other components are finite sets of
quantifier-free LRF -formulas. We can write H = 〈X,Q, flow, jump, inv, init〉.

Intuitively, the flow formulas specify the rules for the continuous dynamics in each mode. The jump conditions
specify when an automaton may switch to another mode. The invariants (when violated) specify when an automaton
must switch to another mode. The init conditions specify the initial states of the system. We say a hybrid automaton
H has a computable representation, if H has an LRF -representation, and all functions in F are Type 2 computable.
From now on we will only consider hybrid automata that have computable representations.

We have not restricted the form of the formulas for defining hybrid automata. This makes the definition more
general than necessary. For instance, the flow should be a continuous mapping from ~x0 and t to ~xt (and thus a
conjunction of equations of the form ~xt = f(~x0, t)), instead of arbitrary formulas. Different classes of hybrid systems
can be defined by refining this definition. Again, LRF representations can contain almost all functions needed in
describing hybrid systems, including nonlinear ODEs that have no analytic expressions. Most of the hybrid systems
studied in the existing literature can be defined by restricting the signature F , for instance:

Example 3.2 (Linear and Polynomial Hybrid Automata). Let F lin = {+} ∪Q and Fpoly = {×} ∪ Fpoly (Rational
numbers are considered as 0-ary functions.) We say a hybrid automaton H is a linear hybrid automaton if it has an
LRFlin

-representation, and a polynomial hybrid automaton if it has an LRFpoly
-representation.
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Trajectories of hybrid systems combine continuous flows and discrete jumps. This motivates the use of a hybrid
time domain, with which we can keep track of both the discrete changes and the duration of each continuous flow.
A hybrid time domain is a sequence of closed intervals on the real line, and a hybrid trajectory is a mapping from
the time domain to the Euclidean space.

Definition 3.3 (Hybrid Time Domains and Hybrid Trajectories). A hybrid time domain is a subset of N×R of the
form Tm = {(i, t) : i < m and t ∈ [ti, t

′
i] or [ti,+∞)}, where m ∈ N ∪ {+∞}, {ti}mi=0 is an increasing sequence in

R+, t0 = 0, and t′i = ti+1. When X ⊆ Rn is an Euclidean space and Tm a hybrid time domain, a hybrid trajectory
is a continuous mapping ξ : Tm → X. We can write the time domain Tm of ξ as T (ξ).

We can now define trajectories of hybrid automata. To link hybrid trajectories with automata, we need a labeling
function σξ,H(i) that maps each step i in the hybrid trajectory to an appropriate discrete mode in H, and make sure
that the flow, jump, inv, init conditions are satisfied.

Definition 3.4 (Trajectories of Hybrid Automata). Let H be a hybrid automaton, Tm a hybrid domain, and ξ :
Tm → X a hybrid trajectory. We say that ξ is a trajectory of H of discrete depth m, written as ξ ∈ JHK, if there
exists a labeling function σξ,H : N→ Q such that:

• For some q ∈ Q, σξ,H(0) = q and RF |= initq(ξ(0, 0)).

• For any (i, t) ∈ Tm, RF |= invσξ,H(i)(ξ(i, t)).

• For any (i, t) ∈ Tm: When i = 0, RF |= flowq0(ξ(0, 0), ξ(0, t), t). When i = k + 1, where 0 < k + 1 < m,

RF |= flowσHξ (k+1)(ξ(k + 1, tk+1), ξ(k + 1, t), (t− tk+1)), and

RF |= jumpσξ,H(k)→σξ,H(k+1)(ξ(k, t
′
k), ξ(k + 1, tk+1)).

The definition is straightforward. In each mode, the system flows continuously following the dynamics defined by
flowq. Note that (t− tk) is the actual duration in the k-th mode. When a switch between two modes is performed,
it is required that ξ(k + 1, tk+1) is updated from the exit value ξ(k, t′k) in the previous mode, following the jump
conditions.

Note that we gave no restriction on the formulas that can be used for describing hybrid automata in Definition 3.1.
A minimal requirement is that the flow predicates should define continuous trajectories over time, namely:

Definition 3.5 (Well-Defined Flow Predicates). Let flow(~x, ~y, t) be a flow predicate for a hybrid automaton H. We

say the flow predicate is well-defined, if for all tuples (~a,~b, τ) ∈ X(H) × X(H) × R≥0 such that R |= flow(~a,~b, τ),

there exists a continuous function η : [0, τ ] → X such that η(0) = ~a, η(τ) = ~b, and for all t′ ∈ [0, τ ], we have
R |= flow(~a, η(t), t). We say H is well-defined if all its flow predicates are well-defined.

This definition requires that we can always construct a trajectory from the end points and the initial points
that satisfy a flow predicate. Flows that are defined using differential equations, differential inclusions, and explicit
continuous mappings all satisfy this condition. Thus, from now on our discussion of hybrid automata assume their
well-definedness.

3.2 Reachability

Formally, the reachability problem for hybrid automata defined as follows.
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Definition 3.6 (Reachability). Let H be an n-dimensional hybrid automaton, and U a subset of its state space Q×X.
We say U is reachable by H, if there exists ξ ∈ JHK,such that there exists (i, t) ∈ T (ξ) satisfying (σHξ (i), ξ(i, t)) ∈ U.

The bounded reachability problem for hybrid systems is defined by restricting the continuous time duration to a
bounded interval, and the number of discrete transitions to a finite number.

Definition 3.7 (Bounded Reachability). Let H be an n-dimensional hybrid automaton, whose continuous state space
X is a bounded subset of Rn. Let U be a subset of its state space. Set k ∈ N and M ∈ R≥0. The (k,M)-bounded

reachability problem asks whether there exists ξ ∈ JHK such that there exists (i, t) ∈ T (ξ) with i ≤ k, t =
∑k
i=0 ti

where ti ≤M , and (σξ(i), ξ(i, t)) ∈ U.

By “step”, we mean the number of discrete jumps. We say H can reach U in k steps, if there exists ξ ∈ JHK that
contains k discrete jumps, which consists of k + 1 pieces of continuous flows in the corresponding discrete modes.

3.3 Encoding Bounded Reachability in LRF

We now define the LRF -encoding of bounded reachability. We need to define a set of auxiliary formulas that will be
important for ensuring that a particular mode is picked at a certain step.

Definition 3.8. Let Q = {q1, ..., qm} be a set of modes. For any q ∈ Q, and i ∈ N, use biq to represent a Boolean

variable. We now define enforceQ(q, i) = biq ∧
∧
p∈Q\{q} ¬bip and enforceQ(q, q′, i) = biq ∧ ¬bi+1

q′ ∧
∧
p∈Q\{q} ¬bip ∧∧

p′∈Q\{q′} ¬b
i+1
p′ .

We say a hybrid automaton H is invariant-free if invq(H) = > for every q ∈ Q(H). We use unsafe = {unsafeq : q ∈
Q} as the LRF -representation of an unsafe region in the state space of H. We can write JunsafeK =

⋃
q∈QJunsafeqK×

{q}. We define the following formula that checks whether an unsafe region is reachable after exactly k steps of
discrete transition in a hybrid system.

Definition 3.9 (k-Step Reachability, Invariant-Free Case). Suppose H is invariant-free, and U a subset of its state
space represented by unsafe. The LRF -formula ReachH,U (k,M) is defined as:

∃X~x0∃X~xt0 · · · ∃X~xk∃X~xtk∃[0,M ]t0 · · · ∃[0,M ]tk.∨
q∈Q

(
initq(~x0) ∧ flowq(~x0, ~x

t
0, t0) ∧ enforce(q, 0)

)

∧
k−1∧
i=0

( ∨
q,q′∈Q

(
jumpq→q′(~x

t
i, ~xi+1) ∧ enforce(q, q′, i) ∧ flowq′(~xi+1, ~x

t
i+1, ti+1) ∧ enforce(q′, i+ 1)

))
∧

∨
q∈Q

unsafeq(~x
t
k).

Intuitively, the trajectories start with some initial state satisfying initq(~x0) for some q. In each step, it follows
flowq(~xi, ~x

t
i, t) and makes a continuous flow from ~xi to ~xti after time t. When H makes a jump from mode q′ to q,

it resets variables following jumpq′→q(~x
t
k, ~xk+1). The auxiliary enforce formulas ensure that picking jumpq→q′ in the

i-the step enforces picking flow′q in the (i+ 1)-th step.
The case of nontrivial invariants and nondeterministic flows require more quantifiers. When the invariants are

not trivial, we need to ensure that for all the time points along a continuous flow, the invariant condition holds.
Thus, we need to universally quantify over time. For deterministic flows, we have:
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Definition 3.10 (k-Step Reachability, Nontrivial Invariant and Deterministic Flow). Suppose H contains invariants
and only deterministic flow , and U a subset of its state space represented by unsafe. In this case, the LRF -formula
ReachH,U (k,M) is defined as:

∃X~x0∃X~xt0 · · · ∃X~xk∃X~xtk∃[0,M ]t0 · · · ∃[0,M ]tk.∨
q∈Q

(
initq(~x0) ∧ flowq(~x0, ~x

t
0, t0) ∧ enforce(q, 0) ∧ ∀[0,t0]t∀X~x (flowq(~x0, ~x, t)→ invq(~x))

)

∧
k−1∧
i=0

( ∨
q,q′∈Q

(
jumpq→q′(~x

t
i, ~xi+1) ∧ flowq′(~xi+1, ~x

t
i+1, ti+1) ∧ enforce(q, q′, i)

∧enforce(q′, i+ 1) ∧ ∀[0,ti+1]t∀X~x (flowq′(~xi+1, ~x, t)→ invq′(~x)))
))

∧
∨
q∈Q

(unsafeq(~x
t
k) ∧ enforce(q, k)).

The extra universal quantifier for each continuous flow expresses the requirement that for all the time points
between the initial and ending time point (t ∈ [0, ti + 1]) in a flow, the continuous variables ~x must take values that
satisfy the invariant conditions invq(~x). For the case of nondeterministic flows, one needs to quantify over possible
choices for each time point, and the details are in the thesis.

3.4 δ-Complete Analysis of Bounded Reachability

We now define the δ-complete analysis problem and prove its decidability.

Definition 3.11 (δ-Weakening of Hybrid Automata). Let δ ∈ Q+ ∪ {0} be arbitrary. Let H be a hybrid automaton
in LRF -representation. The δ-weakening of H is Hδ = 〈X,Q, flowδ, jumpδ, invδ, initδ〉 which is obtained by weakening
all formulas in the LRF -representations of H.

Definition 3.12 (Bounded δ-Reachability). Let H be a hybrid system and U a subset of its state space. Suppose
U is represented by the LRF -formula unsafe. Let k ∈ N and M ∈ R+. The δ-complete analysis for (k,M)-bounded
reachability problem asks for one of the following answers:

• (k,m)-Safety: H does not reach JunsafeK within the (k,M)-bound.

• δ-Unsafety: Hδ reaches JunsafeδK within the (k,M)-bound.

It is straightforward to transfer |delta-decidability of the formulas to the decidability of bounded δ-reachability.

Lemma 3.13. Let δ ∈ Q+ ∪ {0} be arbitrary. Suppose H is a well-defined hybrid automaton with strictly-
imposed invariants. Let U a subset of the state space of H, represented by the set unsafe of LRF -formulas. Let
ReachH,U (k,M) be the LRF -formula encoding (k,M)-bounded reachability of H with respect to U . We always have
that R |= (ReachH,U (k,M))δ iff there exists a trajectory ξ ∈ JHδK such that for some (k, t) ∈ T (ξ), where 0 ≤ t ≤M ,

(ξ(k, t), σξ(k)) ∈ JunsafeδK.

Theorem 3.14 (Decidability). Let δ ∈ Q+ be arbitrary. There exists an algorithm such that, for any bounded
well-defined hybrid automaton LRF -represented by H, and any unsafe region U LRF -represented by unsafe, correctly
performs δ-complete analysis for (k,M)-bounded reachability for H, for any k ∈ N,M ∈ R+.
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Theorem 3.15 (Complexity). Suppose all the LRF -terms in the description of H and U are in complexity class C.
Then deciding the (k,M)-bounded δ-reachability problem is in

• NPC for an invariant-free H;

• (ΣP2 )C for an H with nontrivial invariants and deterministic flows;

• (ΣP3 )C for an H with nontrivial invariants and nondeterministic flows.

Corollary 3.16. For linear and polynomial hybrid automata, δ-complete bounded reachability analysis ranges from
being NP-complete to ΣP

2 -complete for the three cases. For hybrid automata that can be LRF -represented with whose
F contains the set of ODEs defined P-computable right-hand side functions, the problem is PSPACE-complete.

The results come from the fact that the complexity of polynomials is in P, and the set of ODEs in questions are
PSPACE-complete. The complexity results indicate that the worst-case running time of the analysis is exponential
in all the input parameters. In particular, the worst-case running time grows exponentially with the δ and the size
of the domains. We need to use efficient decision procedures to manage this complexity.

4 Practical δ-Complete Decision Procedures

We describe practical algorithms for computing δ-decisions of SMT problems in LRF . The new framework allows
us to exploit the full power of numerical methods in decision problems and formal verification. We show that δ-
completeness serve as a reasonable performance requirement for numerically-driven procedures to be used in formal
verification. We show an analysis of the powerful constraint solving framework Interval Constraint Propagation
(ICP), obtaining conditions under which it is δ-complete. In particular, we develop decision procedures for formulas

that contain ODEs. For any ODE system, we can consider its solution function ~xt = ~f(t, ~x0) as a constraint between
the initial variables ~x0, time variable t, and the final state variables ~xt. We define pruning operators that take interval
assignments on ~x0, t, and ~xt as inputs, and output refined interval assignments on these variables. We formally prove
that the proposed algorithms are δ-complete. Beyond standard SMT problems where all variables are existentially
quantified, we also study ∃∀-formulas under the restriction that the universal quantifications are limited to the time
variables (we call them ∃∀t-formulas). We also give a proof calculus that can be used to validate the correctness of
unsat results given by DPLL(ICP). Such proofs ensure the correctness of the unsat without numerical errors.

4.1 The DPLL〈ICP〉 Framework

Current SMT solvers are mostly built on the DPLL(T) framework. An SMT problem is a quantifier-free first order
formula ϕ with atomic formulas specified by some theory T . The DPLL(T) approach requires the use of a SAT solver
and a theory solver (T-solver). The SAT solver is first applied on the Boolean abstraction ϕB of the formula ϕ,
which is the propositional formula with all the theory atoms replaced by propositional variables. If ϕB is Boolean-
satisfiable, the SAT solver should return a satisfying assignment for all the Boolean variables. Since the Boolean
variables correspond to theory atoms, we need to further check whether the Boolean assignment is consistent with the
theory T . This task calls for the use of a T-solver, which takes a set of theory atoms as input and checks whether the
set is consistent. If the set is consistent, the original formula ϕ is satisfiable; otherwise, the corresponding Boolean
assignment is spurious, and the SAT solver looks for a different satisfying assignment. The process is iterated until a
real solution is found, or all the Boolean solutions have been exhausted and the formula is determined unsatisfiable.

The main utility of the T-solver, which decides whether a set of theory atoms is consistent, is provided by the
Check() procedure. A partial check procedure, named Assert(), is also used alongside the SAT solver, which takes
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each incomplete set of theory atoms asserted by the SAT solver and returns whether it already contains an evident
conflict. The Assert() procedure should work cheaply and incrementally. Usually, Check() is supposed to be sound
and complete while Assert() only has to be sound. We call both Assert() and Check() the checking procedures of
the theory solver. To achieve efficiency, it is not enough to have sound and complete checking procedures only.
When a set of asserted theory atoms is determined to be inconsistent, explanations for such inconsistency should be
provided, so that a clause can be learned for refining the search space. When conflicts occur, the SAT solver needs
to backtrack, and the T-solver should also provide methods for efficient backtracking on the theory atoms.

Interval Constraint Propagation. The method of Interval Constraint Propagation (ICP) [8] finds solutions of
real constraints using a “branch-and-prune” method that performs constraint propagation of interval assignments on
real variables. The intervals are represented by floating-point end-points. Only over-approximations of the function
values are used, which are defined by interval extensions of real functions.

Definition 4.1 (Floating-Point Intervals and Hulls). Let F denote the finite set of all floating point numbers with
symbols −∞ and +∞ under the conventional order <. Let IF = {[a, b] ⊆ R : a, b ∈ F, a ≤ b} and BF =

⋃∞
n=1 IF

n de-
note the set of closed real intervals with floating-point endpoints, and the set of boxes with these intervals, respectively.
When S ⊆ Rn is a set of real numbers, the hull of S is: Hull(S) =

⋂
{B ∈ BF : S ⊆ B}.

Definition 4.2 (Interval Extension [8]). Suppose f :⊆ Rn → R is a real function. An interval extension operator ](·)
maps f to a function ]f :⊆ BF→ IF, such that for any B ∈ dom(]f), it is always true that {f(~x) : ~x ∈ B} ⊆ ]f(B).

The idea of interval constraint propagation is to use interval extensions of functions to “prune” out sets of
points that are not in the solution set, and “branch” on intervals when such pruning can not be done. A high-level
description of the decision version of ICP is given in Algorithm 1. In the Algorithm 1, Branch(B, i) is an operator
that returns two smaller boxes B′ = I1× · · · × I ′i × · · · × In and B′′ = I1× · · · × I ′′i × · · · × In, where Ii ⊆ I ′i ∪ I ′′i . To
ensure termination, it is required that there exists some constant c ∈ (0, 1) such that |I ′i| ≥ c · |Ii| and |I ′′i | ≥ c · |Ii|.
The key component of the ICP algorithm is the Prune(B, f) operation in Algorithm 1.

Algorithm 1 ICP(f1, ..., fm, B0 = I01 × · · · × I0n, δ)

1: S ← B0

2: while S 6= ∅ do
3: B ← S.pop()
4: while ∃1 ≤ i ≤ m,B 6=δ Prune(B, fi) do
5: B ← Prune(B, fi)
6: end while
7: if B 6= ∅ then
8: if ∃1 ≤ i ≤ n, |]fi(B)| ≥ δ then
9: {B1, B2} ← Branch(B, i)

10: S.push({B1, B2})
11: else
12: return sat
13: end if
14: end if
15: end while
16: return unsat
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4.2 δ-Completeness of DPLL〈ICP〉
We formulate the conditions under with the DPLL〈ICP〉 algorithm is δ-complete. The key component of the ICP
algorithm is the Prune(B, f) operation. In principle, any operation that contracts the intervals on variables can be
seen as pruning. However, for correctness we need several formal requirements on the pruning operator in ICP.

Definition 4.3 (Well-defined Pruning Operators). Let F be a collection of real functions, and ] be an interval
extension operator on F . A well-defined (equality) pruning operator with respect to ] is a partial function Prune] :⊆
BF×F → BF, such that ∀f ∈ F , B,B′ ∈ BF,

• (W1) Prune](B, f) ⊆ B;

• (W2) If (Prune](B, f)) 6= ∅, then 0 ∈ ]f(Prune](B, f)).

• (W3) B ∩ Zf ⊆ Prune](B, f);

Intuitively, (W1) requires contraction, so that the algorithm always makes progress: branching always decreases
the size of boxes, and pruning never increases them. (W2) requires that the result of a pruning is always a reasonable
box that may contain a zero. Otherwise B should have been pruned out. (W3) ensures that the real solutions are
never discarded in pruning (called “completeness” in [8]). It is clear from the description of Algorithm 1 that the
following properties hold.

Lemma 4.4. Algorithm 1 always terminates. If it returns sat then there exists nonempty boxes B,B′ ⊆ B0, such
that ||B|| < ε and B = Prune(B′, f1, ..., fm). If it returns unsat then ∀~a ∈ B0, there exists B ⊆ B0 such that ~a ∈ B
and Prune(B, f1, ..., fm) = ∅.

Theorem 4.5 (δ-Completeness of ICP). Let δ ∈ Q+ be arbitrary. The ICPε algorithm is δ-complete for conjunctive
Σ1-sentences in LF (where sat is interpreted as δ-sat) if and only if the pruning operator in ICPε is well-defined.

4.3 Handling Differential Equations

We now study the algorithms for SMT formulas with ODEs. The key is to design the appropriate pruning operators
for the solution functions of ODE systems. To define the pruning operators, we need to use the interval extensions
of the solution functions of ODE systems. Let D ⊆ Rn be compact and gi : D → R be n Lipschitz-continuous
functions. Given the first-order autonomous ODE system d~y

dt = ~g(~y(t, ~x0)) and ~y(0, ~x0) = ~x0 where ~x0 ∈ D, we write
yi : [0, T ] × D → R to represent the i-th solution function of the ODE system. The interval extension of yi is an
interval function ]yi : (IF ∩ [0, T ])× (BF ∩D)→ IF such that for time domain It ⊆ IF ∩ [0, T ] and any box of initial
values B~x0

⊆ BF ∩ D, we have {xt ∈ R : xt = yi(t, ~x0), ~x0 ∈ B~x0
, t ∈ It} ⊆ ]yi(It, B~x0

). We define the pruning
operators based on the interval extensions of the ODE solution functions. The relation between the initial variables
~x0, the time duration t, and the flow variables ~xt is specified by the constraint ~xt = ~y(t, ~x0). Given the interval
assignment on any two of ~x0, ~xt, and t, we can use the constraint to obtain a refined interval assignment to the third
variable vector. For instance, forward pruning can be defined as follows. Gven interval assignments on ~x0 and t, we
compute a refinement of the interval assignments on ~xt. Let ~y : [0, T ]×D → Rn be the solution functions of an ODE
system. Let B~x0

, B~xt , and It be interval assignments on the variables ~x0, ~xt, and t. We define the forward-pruning
operator as:

Prunefwd(B~xt , ~y) = Hull
(
B~xt ∩ ]~y(It, B~x0

)
)
.

Overall, the pruning algorithm on based on ODE constraints iteratively applies the three pruning operators until
a fixed point on the interval assignments is reached.
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Proposition 4.6. The three ODE pruning operators are well-defined.

For ∃∀-formulas, if the universal quantification is only over the time variables, we can follow the trajectory and
prune away the assignment on ~x0, ~xt, and t that violates the constraints on the universally quantified time variable.
In fact, although the extra quantification complicates the problem, the universal constraints improve the power of
the pruning operations.

4.4 From Decisions to Proofs

We focus on the proof the unsatisfiability of conjunctions of theory atoms in the DPLL(T) framework, i.e., formulas
of the form ∃I1x1 · · · ∃Inxn.

∧m
i=1 fi(x1, ..., xn) ∼ 0 where ∼∈ {=, 6=, >,≥, <,≤}. It is clear that once such proofs

are obtained, the proof of unsatisfiability of Boolean combinations of the theory atoms can be obtained, by simply
plugging them in the high level resolution proof. Also, it is important to note that the ICP algorithm solves systems
of constraints, and it regards the conjunction

∧m
i=1 fi(x1, ..., xn) ∼ 0 as one constraint c(x1, ..., xn). Consequently,

our task is now reduced to obtaining proofs for the validity of formulas of the form ∀x1 · · · ∀xn.(x1 ∈ I1 ∧ · · · ∧ xn ∈
In)→ ¬c(~x), from the failure of ICP search for a solution to the original SMT formula ∃~x.~x ∈ ~I ∧ c(~x). We construct
a simple first-order proof calculus DA, and show how to transform ICP runs into proofs in the system. The main
fact is:

Proposition 4.7. For every ICP run ending with a contradiction, the tree construction procedure produces a valid
natural deduction tree for the negation of the input formula in DA. The size of the proofs is linear in the computation
steps.

Note that once the proof tree is constructed, the details of the ICP algorithm itself no longer matters.

5 Implementation and Experiments

In this chapter, we present our tools dReal and dReach that implement the algorithms described in the preceding
chapters. We show experimental results on formula benchmarks and nonlinear hybrid systems models that are beyond
the scope of existing tools. dReal is an SMT solver for formulas over the reals that can handle various nonlinear
elementrary functions in the framework of δ-complete decision procedures. It returns unsat or δ-sat on input formulas,
where δ can be specified by the user. When the answer is unsat, dReal produces a proof of unsatisfiability. When the
result is δ-sat, it provides a solution such that a δ-perturbed form of the input formula is satisfied. The tool is built
based on OpenSMT for DPLL(T) framework, RealPaver for ICP, and CAPD for reliable integration of ODEs. dReach
is a bounded model checker for hybrid systems. Both tools are open-source, available at http://dreal.cs.cmu.edu.
dReal has scaled on benchmarks that contain hundreds of nonlinear ODEs or transcendental functions. The tools
have performed verification on various highly nonlinear hybrid system models that arise in practical applications.
Details are given in the thesis.

6 Summary

This thesis developed a new framework for the formal verification of CPS. We start with a new way of defining core
decision problem of the logic formulas used in verification. We show that such requiring solving the logic formulas
symbolically and precisely is an overkill for reasoning about hybrid systems. In fact, an appropriate relaxation of
the exact decision problems leads to strong decidability and complexity results, both for the decision problems of the
logic formulas and the reachability problems of hybrid automata, that suggest a very different and positive outlook
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for the field. The key step is to develop a concept of numerical approximations in the standard decision problems.
We do this by defining the notion of δ-perturbations on logic formulas, where δ is any positive rational number.
A δ-perturbation on a formula is a syntactic variant of it. Using this notion, we are able to define the δ-decision
problems: for a formula ϕ, we ask whether ϕ is true or a δ-perturbation of ϕ is false (or the other way around). The
key theorem is that the δ-decision problem is decidable for sentences with bounded quantifiers in first-order theories
over the reals with any “numerically computable” real functions. Such a notion of numerical computability has been
studied extensively in the field of computable analysis, and all common continuous functions are computable. This
stands in sharp contrast with the undecidability results for the first-order theory containing trignometric functions.

Next, we show that δ-decidability leads to a new perspective on hybrid system verification. First, we can describe
hybrid automata using arbitrary first-order formulas with computable functions. This leads to general definitions that
are broad enough to express almost all systems of practical relevance. We then show that a notion of δ-reachability
can be defined for hybrid automata using exactly the δ-perturbations on first-order formulas. This leads to positive
decidability and complexity results for solving bounded δ-reachability through bounded model checking, relying on
algorithms that solve the δ-decision problems. We have similar positive results for inductive invariant validation
problems. In all, δ-decisions allow us to circumvent mmuch of the theoretical difficulty in the field.

In practice, the new framework allows us to exploit the full power of numerical methods in decision problems and
formal verification. We show that δ-completeness serve as a reasonable performance requirement for numerically-
driven procedures to be used in formal verification. We show an analysis of the powerful constraint solving framework
Interval Constraint Propogation (ICP), obtaining conditions under which it is δ-complete. We have consequently
built a practical tool dReal combining ICP in the DPLL(T) framework, which can solve formulas in a δ-complete way
for a very general nonlinear signature that inclueds transcendental functions and ODEs. This tool is the backend
of a hybrid system verification tool dReach, which solved challenging nonlinear hybrid automata models beyond the
reach of existing tools.
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[29] A. Platzer, J.-D. Quesel, and P. Rümmer. Real world verification. In CADE, pages 485–501, 2009.

[30] S. Sankaranarayanan. Automatic invariant generation for hybrid systems using ideal fixed points. In K. H.
Johansson and W. Yi, editors, HSCC, pages 221–230. ACM ACM, 2010.

20


	Introduction
	Overview
	Related Work

	-Decidability over the Reals
	Computable Functions over the Reals
	LRF-Formulas
	-Decidability
	Complexity Results
	-Complete Decision Procedures

	Formal Verification of Hybrid Automata
	Hybrid Automata and LRF-Representations
	Reachability
	Encoding Bounded Reachability in LRF
	-Complete Analysis of Bounded Reachability

	Practical -Complete Decision Procedures
	The DPLL"426830A ICP"526930B  Framework
	-Completeness of DPLL"426830A ICP"526930B 
	Handling Differential Equations
	From Decisions to Proofs

	Implementation and Experiments
	Summary

