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A Neural Lyapunov Approach to Transient Stability
Assessment of Power Electronics-Interfaced

Networked Microgrids
Tong Huang , Member, IEEE, Sicun Gao, and Le Xie , Senior Member, IEEE

Abstract—This paper proposes a novel Neural Lyapunov
method-based transient stability assessment framework for power
electronics-interfaced networked microgrids. The assessment
framework aims to determine the large-signal stability of the
networked microgrids and to characterize the disturbances that
can be tolerated by the networked microgrids. The challenge of
such assessment is how to construct a behavior-summary func-
tion for the nonlinear networked microgrids. By leveraging strong
representation power of neural network, the behavior-summary
function, i.e., a Neural Lyapunov function, is learned in the state
space. A stability region is estimated based on the learned Neural
Lyapunov function, and it is used for characterizing disturbances
that the networked microgrids can tolerate. The proposed method
is tested and validated in a grid-connected microgrid, three net-
worked microgrids with mixed interface dynamics, and the IEEE
123-node feeder. Case studies suggest that the proposed method
can address networked microgrids with heterogeneous interface
dynamics, and in comparison with conventional methods that are
based on quadratic Lyapunov functions, it can characterize the
stability regions with much less conservativeness.

Index Terms—Networked microgrids, transient stability assess-
ment, neural Lyapunov method, energy management system,
machine learning, resilient grid.

I. INTRODUCTION

THE PAST decade has witnessed increasing deployment of
distributed energy resources (DERs) in the electric dis-

tribution grid. DERs play a crucial role of decarbonizing the
energy sector and enhancing the resilience of the grid [1].
However, deepening penetration of DERs leads to unprece-
dented complexity for distribution system operation in mon-
itoring, control, and protection. One promising architecture
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Fig. 1. A microgrid-based distribution system: inside the left blue box shows
the physical structure of a microgrid.

to manage the massive integration of DERs is to reconfigure
the distribution system as power electronics-interfaced net-
worked microgrids1 shown in Figure 1. A microgrid packages
interconnected distributed generation units (DGUs) and loads
which are regulated locally by the microgrid central con-
troller (MGCC) [2]. The microgrid has a power-electronic (PE)
interface [2] that physically connects to its host distribution
system via a point of common coupling (PCC). Microgrids
are networked with each other through PCCs and distribution
lines. With such a configuration, instead of managing massive
DGUs at grid edges, a distribution system operator (DSO) only
needs to coordinate a few PE interfaces of microgrids [2], by
which the system management complexity at the DSO level
is significantly reduced.

Given the microgrid-based distribution system, a key
function of its distribution management system (DMS) is
to assess the physical security of networked microgrids.
Functionally speaking, this task should be comprised of
both static security assessment (SSA) and transient stability
assessment (TSA). The SSA scrutinizes if physical vari-
ables of networked microgrids in the steady-state time scale
are within predefined normal operating ranges. It is typi-
cally considered as optimization constraints when researchers
develop coordination strategies of networked microgrids [3]
for grid resilience enhancement and economical efficiency
maximization. The TSA examines the dynamic behaviors of
networked microgrids in a faster time scale. The TSA tool
aims to characterize (large) disturbances that the networked
microgrids can tolerate. Such characterization allows for effi-
cient design and planning of the microgrid-based distribution

1In the sequel, “power electronics-interfaced networked microgrids” and
“networked microgrids” are used interchangeably for the sake of brevity.
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systems [4], and it also enables a DSO to maintain situational
awareness in real-time operation [4]. This paper focuses on
assessing transient stability of networked microgrids. Such a
topic concerns the DSO, because excessive energy transactions
among microgrids may lead to stability issues, even though
each individual microgrid is stabilized by its local MGCC [2].

There are two categories of approaches to the design of sta-
bility assessment tools for networked microgrids. One category
of approaches is to tailor the stability assessment develop-
ment in bulk transmission systems for microgrid application.
One well-studied TSA method developed for the transmis-
sion systems is the energy function method [5]–[8] which
aims to construct an energy function that can certify stabil-
ity. While an exact energy function can be developed for
multi-machine power systems with transmission lines that have
uniform R/X ratios [9], [10], it generally dose not exist for
power grids with lossy lines [5]. In distribution systems, large,
uneven R/X ratios of distribution lines result in non-existence
of the exact energy function in networked microgrids. It is
plausible to use a numerical energy function for estimating
critical clearing time [7], [8] in transmission systems with
lossy lines. The numerical energy function however involves
approximations on the path-dependent term [6]–[8], and its
reliability and performance lack rigorous theoretical guar-
antee [5]. The TSA of transmission systems can also be
achieved by decision-tree (DT) approaches [11]–[13]. While
the DT-based approaches have a transparent decision-making
process, how to connect decisions from decision trees to
the classic stability concept [14] is an open question, and
such a kind of interpretability is required by safety-critical
power grids. The good performance of the DT-based approach
heavily depends on thorough selection of training scenar-
ios which is hard to be accomplished in practice. Another
category of stability assessment approaches is designed specif-
ically for microgrids and distribution systems. References [15]
and [16] evaluate transient stability of microgrids by perform-
ing time-domain simulations under credible contingencies.
The time-domain simulation approach is flexible for includ-
ing complex dynamics of grid components, but it cannot
certify stability rigorously, as by definition, stability [14]
requires one to examine system responses under infinite num-
ber of disturbances, which is not possible for simulation-based
time-domain methods. Reference [17] proposes a distributed
framework capable of assessing the small-signal stability of
networked microgrids. Reference [18] conducts small-signal
stability analysis for DC microgrids. However, the small-signal
analysis cannot quantify the magnitudes of large disturbances
that distribution systems can tolerate. References [5], [19]
and [20] construct a quadratic Lyapunov function which can
be used for TSA of a power system with line loss. However,
the TSA tool based on quadratic Lyapunov functions may be
overly conservative. Besides, references [19] and [20] do not
address the nonlinearity of AC microgrid network between
multiple grid components. Reference[2] utilizes linear matrix
inequalities (LMIs) in order to certify global asymptotic stabil-
ity of networked microgrids. The framework proposed in [2]
requires a special form of interface dynamics and it cannot
characterize disturbances that can be tolerated by networked

microgrids when global asymptotic stability is not guaranteed.
Reference [21] leverages the sum of square (SOS) technique
to construct a Lyapunov function in order to assess the tran-
sient stability of networked microgrids. However, the SOS
technique may require significant computation power when
addressing large systems. Besides, most literature conduct-
ing stability analysis for conventional distribution systems,
such as [22]–[24], focuses on voltage stability issues, where
the analysis relies on steady-state models lying in a slow
time scale. The stability issues in a fast time scale, such as
angle stability, are rarely addressed in conventional distribu-
tion systems. This is because these fast dynamic problems
are mainly mitigated by the host transmission systems which
provide frequency regulation for the convention distribution
systems. However, networked microgrids may operate inde-
pendently without connecting to transmission systems. As a
result, the frequency may be regulated locally in a fast time
scale by the networked microgrids, rather than the transmission
systems. This renders the TSA in a fast time scale imperative
for the networked microgrids.

In this paper, we develop a theoretically rigorous,
machine learning-inspired TSA tool for networked microgrids.
Assessing the transient stability of networked microgrids is
formulated as a problem of computing the stability region. We
leverage neural networks to learn a local Lyapunov function
in the state space. The optimal stability region is estimated
based on the Lyapunov function learned, and is used for
characterizing disturbances that the networked microgrids can
tolerate. Case studies suggest that the proposed TSA tool has
the following merits: 1) It can assess the transient stability of
networked microgrids with heterogeneous interface dynamics;
2) It can provide less conservative characterization of distur-
bances that can be tolerated by networked microgrids, com-
pared with methods based on quadratic Lyapunov functions;
and 3) It requires less computational power when addressing
large systems, compared with the SOS-based approach [21].
Building upon our preliminary work [4], this paper substan-
tially expands the scope by the following improvement: 1) We
refine the Lyapunov risk, allowing for assessing transient sta-
bility of networked microgrids with mixed interface dynamics;
2) We develop a prerequisite checking condition to ensure
the existence of Lyapunov functions; 3) We present a tun-
ing procedure for the user-defined parameters in the proposed
algorithms; 4) We propose an algorithm for estimating the
largest stability region given a Lyapunov function learned; and
5) The proposed algorithm is tested in networked microgrids
with mixed interface dynamics and a realistic 123-node feeder.

The rest of this paper is organized as follows: Section II
describes the dynamics of networked microgrids; Section III
presents the Neural Lyapunov method to TSA; and Section IV
tests and validates the tool in three numerical experiments; and
Section V concludes the paper and points out future direction.

II. DYNAMICS OF MICROGRIDS WITH PE INTERFACES

With the physical configuration of the networked microgrids
in Figure 1, the dynamics that a microgrid exhibits at the
DSO-level control are mainly determined by the control
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Fig. 2. Comparison between the full and simplified microgrid interface
dynamics: δk and ωk .

strategy deployed at its PE interface [2], [17]. This section
characterizes the dynamics of the PE interfaces by presenting
typical control schemes deployed at the microgrid interfaces.
Based on the interface dynamics, we provide a mathematical
description for the dynamics of networked microgrids.

For the n networked microgrids in Figure 1, without loss of
generality, suppose that the angle droop control is deployed in
the k-th microgrid’s PE interface, where k = 1, 2, . . . , n. The
interface dynamics of the k-th microgrid are [2], [17]

Makδ̇
′
k + δ′k = Dak

(
P∗k − Pk

)
(1a)

MvkĖ′k + E′k = Dvk
(
Q∗k − Qk

)
(1b)

where δ′k and E′k are deviations of voltage phase angle δk

and voltage magnitude Ek from their steady state values δ∗k
and E∗k at the k-th PCC, respectively, i.e., δ′k := δk − δ∗k and
E′k := Ek − E∗k ; Mak and Mvk are tracking time constants; Dak

and Dvk are droop gains; Pk and Qk denote real and reactive
power injections to PCC k; and P∗k and Q∗k are the steady-state
injections of real and reactive power at the k-th PCC [2].

Equation (1) is a simplified model of the PE interface
dynamics. Appendix A describes a detailed model of a typical
PE interfaces including a power calculator, a droop controller,
a voltage and current controller and an output LC filter. The
simplified model assumes that the dynamics of the power cal-
culator, the voltage and current controller and the output filter
are stabilized fast. Here, we demonstrate that the simplified
dynamics can approximate the behavior of the PE interface
modeled with details. Consider a microgrid interface connect-
ing to its host distribution system via a tie line. At the tie
line, suppose that a three-phase-to-ground fault occurs at the
1st second and it is cleared 3 cycles later. Figure 2 shows
the simulation of the microgrid interface response to the event
based on the detailed model and the simplified model. The
simulation details are presented in Appendix B. It can be
observed in Figure 2 that the simplified model can reflect the
general trend of the response of the interface modeled with
details. Therefore, we use the simplified dynamics to model
the behaviors of the PE interfaces.

The n microgrids are networked via distribution network
which introduces constrains

Pk − GkkE2
k −

∑

i �=k

EkEiYki cos (δki − σki) = 0 (2a)

Qk + BkkE2
k −

∑

i �=k

EkEiYki sin (δki − σki) = 0, ∀k, (2b)

where δki = δk−δi; Gkk+jBkk is the k-th diagonal entry in the
admittance matrix of the distribution network; and Yki∠σki is
the (k, i)-th entry of the admittance matrix. The steady-state
values δ∗k , E∗k , P∗k and Q∗k are designed based on economic
dispatch and they satisfy the following equality constrains:

P∗k − GkkE∗2k −
∑

i �=k

E∗k E∗i Yki cos
(
δ∗ki − σki

) = 0 (3a)

Q∗k + BkkE∗2k −
∑

i �=k

E∗k E∗i Yki sin
(
δ∗ki − σki

) = 0, ∀k, (3b)

where δ∗ki = δ∗k − δ∗i . Differential equations (1) with algebraic
equations (2) characterize the dynamics of the n networked
microgrids, and their compact form is

ẋ = f(x) (4)

where x = [δ′1, δ′2, . . . , δ′n,E′1,E′2, . . . ,E′n]; and f(·) is deter-
mined by (1) and (2). Note that the equilibrium point o of the
dynamic system (4) is the origin of the state space.

If Mvk � Mak, the time-scale separation can be
assumed [2], [4]. In such a case, the voltage deviation E′k
evolves much slower than the phase angle deviation δ′k and,
therefore, E′k is assumed to be constant [2]. Furthermore, if
only angular stability is of interest, the dynamics of the n
networked microgrids can be described by

Makδ̇
′
k + δ′k = Dak

(
P∗k − Pk

)
, ∀k, (5)

where Pk = GkkE∗2k +
∑

i �=k E∗k E∗i Yki cos (δ′ki + δ∗ki − σki). The
compact form of (5) can be also expressed as (4) where x and
f(·) should be revised accordingly. Besides, with the time-
scale separation assumption, if the frequency droop control is
deployed in the j-th microgrid, the j-th differential equation
in (5) is replaced by

δ̇′j = ω′j, Mfjω̇
′
j + Dfjω

′
j = P∗j − Pj

where ω′j = ωj − ωn.
With the networked microgrids (4) and its equilibrium

point o, a DSO may have the following two questions [4]:
1) Is o asymptotically stable? 2) How “large” are the distur-
bances that the networked microgrids can tolerate? Suppose
that the length of the state vector x is m, and recall that the
equilibrium point is at the origin, i.e., o = 0, the definition of
the asymptotic stability is introduced as follows:

Definition 1 (Asymptotic Stability and Stability
Region [14]): An equilibrium point 0 is asymptotically
stable, if

∀ε > 0, ∃ζ > 0, ‖x(0)‖ < ζ =⇒ ∀t ≥ 0, ‖x(t)‖ < ε

and lim
t→∞ x(t) = 0. (6)
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Moreover, when the system is asymptotically stable at 0, its
stability region, or region of attraction, is defined as D = {x0 ∈
R

m|x(0) = x0 =⇒ limt→∞ x(t) = 0}.
In Definition 1, x(0) is resulting from the microgrid

interconnection-level events, say, topology changes of distri-
bution system network, and one of the microgrids enters an
islanded/grid-connected mode. The transient stability assess-
ment framework proposed in this paper aims to answer the
two DSO questions.

III. NEURAL LYAPUNOV METHODS

This section addresses two important questions from a
DSO’s perspective. We first point out the asymptotic stability
of networked microgrids can be certified by the Lyapunov lin-
earization method [14] and formulate the second DSO’s ques-
tion as the one of estimating a stability region of networked
microgrids. Then an optimal stability region is estimated via
learning a Lyapunov function. Finally, how to empirically tune
the parameters of proposed algorithms is discussed.

A. Asymptotic Stability Check

Given the networked microgrids (4) and its equilibrium o,
the Lyapunov linearization method [14] suggests the asymp-
totic stability of o can be determined by examining the
linearized version of (4), i.e.,

ẋ = Ax. (7)

In (7), A ∈ R
m×m is a system matrix, where m is the length of

the state vector x. The system matrix A is obtained by lineariz-
ing (4) around its equilibrium point o based on the linearization
technique [25] which has been extensively used for charac-
terizing small-signal phenomena of power grids [26]–[30].
Suppose that matrix A has m eigenvalues λ1, λ2, . . . , λm. The
equilibrium point o of (4) is asymptotically stable [14], if

Re(λi) < 0 ∀i = 1, 2, . . .m. (8)

Condition (8) answers the first question raised in Section II.
For the second DSO’s question, the stability region in

Definition 1 can be leveraged to characterize the disturbances
that the networked microgrids (4) operating at o are able to
tolerate. Definition 1 essentially says that the system trajec-
tory starting in the stability region D tends to the equilibrium
point o. The second DSO’s question can be answered if such
a stability region is obtained.

A stability region D can be estimated based on a system
behavior-summary function, i.e., a Lyapunov function, in con-
junction with the Local Invariant Set Theorem [14]. The
Lyapunov function is given by the following definition [4]:

Definition 2: A continuous differentiable scalar function
V(x) is a Lyapunov function for an autonomous system
(4) with equilibrium point 0, if, in a ball Bu := {x ∈
R

m|u> 0, ‖x‖22 < u2}, 1) V is positive definite in Bu, and
2) V̇ is negative definite in Bu.

Once a legitimate Lyapunov function V(x) becomes avail-
able, a stability region can be estimated by a region Sd that is
defined by any sublevel set of V(x) completely contained in
the ball Bu, i.e., for d > 0,

Sd =
{
x ∈ R

m|V(x) < d
} ⊆ Bu. (9)

Fig. 3. A neural network with one hidden layer.

The region Sd is an invariant set due to the decreasing nature
of the Lyapunov function V(x). Besides, the Invariant Set
Theorem [14] suggests that with the Lyapunov function V(x),
a system trajectory x(t) starting in Sd converges to the origin of
the state space. Therefore, the region Sd is a stability region.
In order to characterize the disturbances that the networked
microgrids can tolerate, the remaining questions are: 1) How
to find a legitimate Lyapunov function in a valid region Bu;
and 2) with a Lyapunov function valid in Bu, how to make
the stability region Sd as large as possible by tuning d in (9).
These two questions are addressed in Sections III-B and III-C.

B. Learning Lyapunov Function From the State Space

1) Lyapunov Function With Neural Network Structure:
We assume that a Lyapunov function candidate is a neural
network. The neural network has a hidden layer and an output
layer [31], [32]. The input of the hidden layer is the state vec-
tor x ∈ R

m and the output is a vector v1 ∈ R
p where p is the

number of neurons in the hidden layer, as shown in Figure 3.
Function g1 : Rm → R

p describes the relationship between x
and v1 and its definition is

v1 = g1(x) := tanh(W1x+ b1) (10)

where W1 ∈ R
p×m; b1 ∈ R

p; and tanh(·)2 is an entry-wised
hyperbolic tangent function [4]. Furthermore, we define an
intermediate vector c1 = [c1,1, c1,2, . . . , c1,p]� for the hidden
layer by c1 = W1x + b1. For the output layer, its input is
vector v1 and its output is Vθ ∈ R which is interpreted as the
Lyapunov candidate evaluated at vector x. Vθ is related with
v1 via function g2 : Rp → R defined by

Vθ = g2(v1) := tanh(W2v1 + b2) (11)

where W2 ∈ R
1×p; and b2 ∈ R. The intermediate variable c2

associated with the output layer is defined by c2 = W2v1+b2.
In sum, the Lyapunov function candidate is

Vθ (x) = g2(g1(x)). (12)

Denote by θ the vector that consists of all unknown entries
in W1, b1, W2, and b2. The subscript of Vθ indicates that the
Lyapunov function candidate depends on θ .

2In this paper, “tanh(·)” and “tanh(·)” are different. The input argument
of “tanh(·)” can be a vector, while the input argument of “tanh(·)” can only
be a scalar.
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Algorithm 1 Lyapunov Risk Minimization
1: function MinRisk(θ0,X , f, p, r, η, α, β, γ, τ )
2: θ ← θ0
3: while i ≤ r do
4: Update Vθ and V̇θ by (12), (14) with θ
5: Compute R|X |,ρ(θ) via (13) over X
6: θ ← θ − η∇θ R|X |,ρ(θ); i← i+ 1
7: end while
8: return θ
9: end function

2) Lyapunov Risk Minimization: We proceed to tune θ such
that Vθ (x) in (12) meets the two conditions in Definition 2.
Suppose that there are q state vectors x1, x2, . . . , xq. Let set
X collect these q vector samples. To tune θ , we introduce a
cost function called (empirical) Lyapunov risk, i.e.,

Rq(θ) = α

q

q∑

i=1

(ReLU(−Vθ (xi)))

+ β

q

q∑

i=1

(
ReLU

(
V̇θ (xi)+ τ

))+ γV2
θ (0) (13)

where the tunable parameters α, β, γ and τ are positive
scalars; ReLU(·) denotes the rectified linear unit defined by

ReLU(y) =
{

y, y ≥ 0
0, y < 0;

and V̇θ is given by [4]

V̇θ = ∂Vθ

∂x
f(x) = ∂Vθ

∂c2

∂c2

∂v1

∂v1

∂c1

∂c1

∂x
f(x). (14)

In (14), the dynamics f(x) is provided in (4);

∂Vθ

∂c2
= 1− V2

θ ;
∂c2

∂v1
= W2; ∂c1

∂x
= W1; and

∂v1

∂c1
= diag

(
1− tanh2(c1,1

)
, . . . , 1− tanh2(c1,p)

)
.

The interpretation of the Lyapunov risk (13) is presented as
follows. In (13), The first “ReLU” term incurs positive penalty
if Vθ (xi) is negative. The second “ReLU” term results to pos-
itive penalty if V̇θ (xi) is greater than −τ . If the evaluation of
Vθ at the origin of the state space is not zero, the Lyapunov
risk also increases according to (13). Parameters α, β, γ and τ
determine the importance of the three terms of (13) and their
tuning procedure is discussed in Section III-D.

Given the training set X , in order to find a Lyapunov func-
tion valid in Bu, unknown parameters θ should be chosen such
that the Lyapunov risk Rq(θ) is minimized, viz.

min
θ

Rq(θ). (16)

The gradient decent algorithm can be leveraged to solve (16).
Algorithm 1 presents a procedure to update θ , where θ0 is the
initial guess of θ ; r ∈ Z+ denotes the times of updating θ ; and
the positive scalar η is the learning rate. Note that merely using
Algorithm 1 to update θ is not sufficient even with a large r.
One reason is that X solely covers a finite number of training
samples in Bu. With the θ obtained by Algorithm 1 based
on X , it is possible that one or both of the two conditions
in Definition 2 are violated in some part of Bu that is not
included in X . This issue is addressed in Section III-B3.

Algorithm 2 Learning Lyapunov Function
1: function AddSample(X ,Vθ , f, u)
2: κ ← 1
3: Check (17) in Bu and find C by dReal
4: if C = ∅ then κ ← 0 � No counterexamples found
5: else X ← C ∪ X � Add counterexamples to X
6: end if
7: return X , κ
8: end function
9: function LearnFunc(X , θ0, f, u, p, r, η, α, β, γ, τ, ni)

10: κ ← 1; j← 0
11: while (κ = 1) ∧ (j ≤ ni) do
12: θ ← MinRisk(θ0,X , f, p, r, η, α, β, γ, τ )
13: θ0 ← θ; j← j+ r
14: X , κ ← AddSample(X ,Vθ , f, u)
15: end while
16: if κ = 0 then Vθ∗ ← Vθ − Vθ (0)
17: else Vθ∗ ← ∅
18: end if
19: return Vθ∗
20: end function

3) Augment of Training Samples: Here, we utilize the sat-
isfiability modulo theories (SMT) solver [33] to analytically
check if the function learned by MinRisk is a legitimate
Lyapunov function. This is equivalent to searching for state
vectors x ∈ Bu that satisfy

(
Vθ (x) ≤ 0 ∨ V̇θ ≥ 0

) ∧
(
‖x‖22 ≥ l2

)
(17)

where l is a small scalar; and ‖x‖22 ≥ l2 is added for avoiding
numerical issues of the SMT solver [34]. The state vectors x ∈
Bu satisfy condition (17) are termed counterexamples which
can be found by the SMT solver, such as dReal [33]. Denote
by C the set that consists of the counterexamples found by the
SMT solver. If C is not an empty set, the learned function is
not a Lyapunov function and the richness of the training set X
is enhanced by adding counterexamples in C to X . If dReal
cannot find such a counterexample, i.e., C is an empty set,
thanks to the delta-completeness property [33] of dReal, it
is guaranteed that there is no such a counterexample, thereby
suggesting that the function learned is a legitimate Lyapunov
function. The procedure of augmenting the training samples
is presented in the AddSample function of Algorithm 2.

The function LearnFunc of Algorithm 2 summarizes the
overall procedure of updating the unknown parameter θ and
augmenting the training set X . In LearnFunc, ni is the
maximum iteration times defined by users.

Remark: The proposed method requires the availability of
dynamics (4). The neural network (12) in this paper is merely
for the purpose of learning a Lyapunov function for (4), instead
of identifying the networked microgrids dynamics (4).

C. Stability Region Estimation Algorithm

Given a Lyapunov function Vθ∗ with its valid region Bu, we
proceed to tune d in (9) so that the estimated stability region
is maximized. The optimal d∗ is determined by solving [35]

d∗ = min
x

Vθ∗(x) (18a)

s.t. ‖x‖22 = u2. (18b)
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The state vectors satisfying the equality constrain (18b) consti-
tute the boundary of the valid region Bu of Vθ∗ . Equation (18a)
essentially says that d∗ is the minimal value of Vθ∗(x)
evaluated along Bu’s boundary.

The optimization (18) can be solved by finding critical
points defined as follows. The Lagrangian L(x, φ) of (18) is

L(x, φ) = φ
(
‖x‖22 − u2

)
+ Vθ∗(x). (19)

where φ ∈ R. Define a set P by

P :=
{

x ∈ R
m
∣∣∣∣
∂L(x, φ)
∂x

= 0, ‖x‖22 − u2 = 0

}
. (20)

Each element of the set P is a critical point. The global min-
imum of Vθ∗ over Bu’s boundary occurs at one of the critical
points. Finding P is equivalent to obtaining all solutions to

2φx+ ∂Vθ∗

∂x
= 0; ‖x‖22 − u2 = 0. (21)

Unknown parameters W1, W2, b1, and b2 in (10) and (11) can
be updated by the θ∗ returned by Algorithm 2. Denote by W∗1 ,
W∗2 , b∗1, and b∗2 the updated version of W1, W2, b1, and b2,
respectively. In (21),

∂Vθ∗

∂x
=

(
1− Vθ∗(x)

2
)

W∗2 W∗1� (22)

where � = diag(1− tanh2(c∗1,1), . . . , 1− tanh2(c∗1,p)), whence
[c∗1,1, . . . , c∗1,p]� = W∗1 x + b∗1. With (22), (21) becomes
algebraic equations whose compact form is

h(x, φ) = 0. (23)

The Newton-Krylov (NK) method [36] can solve (23) for x
and φ with the initial guesses x0 and φ0 on solutions. If set
P is available,

d∗ = min
x∈P

Vθ∗(x). (24)

Then, the corresponding stability region is

Sd∗ =
{
x ∈ R

m|Vθ∗(x) < d∗
}
. (25)

With the Lyapunov function learned by LearnFunc, the
procedure to estimating a stability region is provided by the
SREst function of Algorithm 3, where NK(h, x0, φ0) denotes
the procedure of solving h(x, φ) = 0 with the initial guesses x0
and φ0 using the NK method; and the NK procedure returns
x∗ and φ∗ which constitute a solution to h(x, φ) = 0. The
solution found by the NK procedure depends on the initial
guesses x0 and φ0. To find all critical points, the SREst
function repetitively solves (23) for nsr times. For each time
of solving (23), x0 and φ0 are randomly realized by Lines
4 and 5 of Algorithm 3, instead of being chosen by users.
The Main function of Algorithm 3 summarizes the proce-
dure described in Sections III-A, III-B, and III-C. Line 24 of
Algorithm 3 requires a parameter tuning procedure to obtain
a system matrix A with all eigenvalues on the left-half plane.
Such a procedure can be designed based on the eigenvalue
sensitivity analysis [37] or H∞ optimization [38]. Note that
checking asymptotic stability of the given equilibrium (Lines
14-16 of Algorithm 3) is a prerequisite for learning a Lyapunov
function and estimating an optimal stability region.

Algorithm 3 Stability Region Estimation
1: function SREst(Vθ∗ , u, nsr)
2: P ← ∅; construct h by (21), (22)
3: for k = 1, 2, . . . , nsr do
4: Pick a random x0 in {x0 ∈ R

m|‖x0‖22 = u2}
5: Pick a random φ0 ∈ R

6: x∗, φ∗ ← NK(h, x0, φ0)
7: if x∗ /∈ P then P ← P ∪ x∗
8: end if
9: end for

10: Obtain Sd∗ via (24), (25)
11: return Sd∗
12: end function
13: function Main(f, u, p, q, θ0, r, η, α, β, γ, τ, nsr, ni)
14: Linearize f to obtain A in (7)
15: Compute eigenvalues λi of A ∀i = 1, 2, . . .m
16: if (8) holds then � Asymptotic stability check
17: Construct X by randomly picking q vectors in Bu
18: Vθ∗ ← LearnFunc(X , θ0, f, u, p, r, η, α, β, γ, τ, ni)
19: if Vθ∗ �= ∅ then
20: Sd∗ ← SREst(Vθ∗ , u, nsr)
21: return Vθ∗ , Sd∗
22: else Request for tunning user-defined parameters
23: end if
24: else Request for tuning parameters in (4)
25: end if
26: end function

D. Parameter Tuning

In Algorithm 3, the empirical settings of θ0, p, q, r, η, nsr,
ni and τ are provided as follows: the random initial guess θ0
is obtained by the initialization procedure reported in [39];
p ≥ 2m; q, nsr, and ni are 500, 100, and 5000, respectively;
integer r ∈ [10, 30]; τ ∈ [0.1, 0.5]; and η ∈ [0.01, 0.02].

Given a set of user-defined parameters, it is possible that
the Main function returns an empty set ∅, meaning that the
function fails to find a Lyapunov function valid in Bu within ni
iterations. Solutions to such a situation include 1) decreasing u;
2) changing θ0; and 3) tunning α, β, and γ . Solution 1 works
because there may not be a Lyapunov function in a large ball.
Solving (16) using gradient-based methods depends on the
initial guess on the solution, which justifies Solution 2.

Next we present an empirical procedure to tune α, β, and
γ . Denote by θni the ni-th update of θ in LearnFunc. The
function Vθni

and its time derivative V̇θni
can be visualized in

subspace of Bu. The visualization may suggest which condi-
tion(s) in Definition 2 is (are) violated, thereby pointing out the
“direction” of tunning α, β, and γ . For example, suppose that
one needs to learn a Lyapunov function for a system whose
state variables are [δ′1, δ′2, δ′3, ω′3] using LearnFunc. After ni-
time parameter updates, the function with parameter θni and
its time derivative can be visualized by numerically evaluat-
ing the functions within Bu’s projection to the δ′1-ω′3 plane
with δ′2 = δ′3 = 0. Suppose that the visualization is given in
Figure 4. As shown in Figure 4, the function with parameter
θni is not a Lyapunov function in B0.4, because its time deriva-
tive is not negative in B0.4, although the function is positive.
Figure 4 indicates that with other parameters fixed, one may
need to increase the penalty resulting from the violation of the
second condition of Definition 2, i.e., increasing β in (13).
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(a)

(b)

Fig. 4. Visualization of the function (a) and its time derivative (b) after ni
times of parameter update: the function is NOT a Lyapunov function.

Fig. 5. A grid-connected microgrid [4].

IV. NUMERICAL EXPERIMENTS

This section tests and validates the proposed method in a
grid-connected microgrid, a three-microgrid interconnection
with mixed dynamics, and the IEEE 123-node feeder. All
experiments in this section are conducted on a MacBook Pro
(2.6 GHz Intel Core i5) with Python 3.7.7.

A. A Grid-Connected Microgrid

A grid-connected microgrid (MG) with angle-droop control
is shown in Figure 5. The user-defined parameters required in
Algorithm 3 are listed in Table I.

1) Learned Lyapunov Function: After 500 times of param-
eter updates, which takes 32.18 seconds, Algorithm 2 outputs
a Lyapunov function. Figure 6 shows the Lyapunov function
learned and its time derivative. As shown in Figure 6, the

TABLE I
USER-DEFINED PARAMETERS

Fig. 6. (a) Lyapunov function and (b) its time derivative for a grid-tied MG.

function learned is positive definite in the valid region (VR)
B1.5 and its time derivative is negative definite in B1.5. This
suggests that the function learned is a Lyapunov function.

2) Estimated Stability Region: Given the Lyapunov func-
tion learned with its VR B1.5, the stability region (SR)
estimated by Algorithm 3 is S1.01 which is defined by (25). In
Figure 7, the red-solid circle is the boundary of S1.01, while
the red-dash circle is the boundary of B1.5; and the region
enclosed by the red-solid circle is a SR. Besides, the SREst
function suggests that d∗ in (18) is 1.01 which is attained when
δ′1 = −0.82 and E′1 = 1.26.

We proceed to check the correctness of the estimated SR
S1.01. Since the test system only has two state variables, given
the Lyapunov function learned, the largest SR can be found
without solving optimization (18). For example, we can visu-
alize a SR Sd with a small d, say, d = 0.15. Figure 7-(b)
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Fig. 7. (a) Comparison between the proposed (NN) and conventional (cvt.)
methods: SR and VR (b) An alternative way to find Sd∗ by tuning d.

visualize S0.15. We keep increasing d gradually until the
boundary of Sd touches the boundary of B1.5 for the first time.
As can be observed in Figure 7-(b), when d = 1.01, the bound-
aries of Sd and B1.5 touch with each other at (−0.82, 1.26).
Therefore, S1.01 is the largest SR that can be estimated based
on the learned Lyapunov function. The SR obtained by such
a procedure is consistent with the one estimated by function
SREst.

3) Comparison: The proposed method is compared with
a conventional method reported in [5]. Denote by S ′ the SR
estimated based on a quadratic Lyapunov function constructed
in [5]. In Figure 7, the region enclosed by the blue-solid circle
is S ′, while the blue-dash circle is the boundary of the VR of
the quadratic Lyapunov function. It can be observed that S1.01
is larger than S ′. This suggests that the propose method can
provide a less conservative characterization of the SR than the
conventional method.

Suppose that the grid-connected MG has an initial con-
dition x(0) = [−0.5, 1]�, due to a disturbance. Such an
initial condition is inside S1.01, but outside S ′. Therefore,
S1.01 can conclude that the system trajectory tends to its equi-
librium point, whereas S ′ can conclude nothing about the
system’s asymptotic behavior under such a disturbance. The

Fig. 8. Time-domain simulation for the grid-connected MG with initial
conditions δ′1(0) = −0.5 rad. and E′1(0) = 1 p.u.

Fig. 9. Three Networked Microgrids with Mixed Dynamics.

time-domain simulation shown in Figure 8 confirms that all
state variables tend to their pre-dispatched steady-state values.

B. Three Networked Microgrids With Mixed Dynamics

Figure 9 shows a three-MG interconnection with mixed
interface dynamics: the angle droop control is deployed in
the PE interfaces of MGs 1 and 2, whereas the frequency
droop control is deployed in the PE interfaces of MG 3. Since
Mvk � Mak for k = 1, 2 and Mv3 � Mf3, the time-scale sep-
aration is assumed [2]. We focus on the asymptotic behavior
of phase angle and frequency. The user-defined parameters of
Algorithm 3 are listed in Table I.

1) Learned Lyapunov Function: After taking 23737.53 sec-
onds, Algorithm 3 outputs a Lyapunov function Vθ∗ valid in
B0.4. Given δ′3 = 0 and ω′3 = 0, Vθ∗ and V̇θ∗ are visualized
in Figure 10, where it is observed that Vθ∗ > 0 and V̇θ∗ < 0
in B0.4, suggesting Vθ∗ behaves like a Lyapunov function.

2) Estimated Stability Region: With the learned Lyapunov
function, Algorithm 3 provides an estimated SR S0.37.
Figure 11-(a) visualizes S0.37 and B0.4 in the δ′1-δ′2 space with
δ′3 = 0.37 and ω′3 = −0.14, where the red-solid circle is
the boundary of S0.37, and the red-dash circle is the bound-
ary of B0.4. The SREst function suggests that d∗ in (18) is
0.37 which is attained when x is [−0.07, 0.01, 0.37,−0.14]�.
Figure 11-(a) shows that the boundary of S0.37 touches the
boundary of B0.4 at point (−0.07, 0.01).

3) Comparison: Denote by S ′′ the SR estimated based on
the Lyapunov function proposed in [5]. The blue-solid circle in
Figure 11-(b) represents the boundary of S ′′ in the δ′1-δ′2 plane,
given δ′3 = ω′3 = 0. Suppose that the pre-event condition x(0)
is [0.1,−0.1, 0, 0]�. Since x(0) is inside S0.37 but outside S ′′,
one can conclude that all states tend to the equilibrium based
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Fig. 10. (a) Lyapunov function and (b) time derivative for 3 networked MGs.

TABLE II
DISTRIBUTION LINE PARAMETERS

on S0.37, while the asymptotic behavior the system cannot be
assessed by S ′′ with x(0). The time-domain simulation con-
firms that all state variables indeed converge to their post-event
steady-state values. In Figures 11-(a) and 11-(b), the reason
why we observe different security (valid) regions estimated
from the proposed method is that δ′3 and δ′4 are set to different
values in these two cases.

C. IEEE 123-Node Test Feeder

Figure 13 shows a 123-node distribution system [40] which
is partitioned into 5 networked MGs [2]. We assume that each
MG is managed by its MGCC and connects to the grid via a
PE interface with angle droop control [2]. The impedances of
the interconnection distribution lines are reported in Table II.
The control parameters and pre-dispatched setpoints are listed
in Table III. The user-defined parameters in Algorithm 3 are

Fig. 11. (a) SR and VR around the touching point. (b) Comparison between
the proposed (NN) and conventional (cvt.) methods.

TABLE III
CONTROL PARAMETERS, PRE-EVENT MEASUREMENTS AND

POST-EVENT SETPOINTS OF THE IEEE 123-NODE FEEDER

reported in Table I. Note that the time-scale separation is
assumed, as Mvk � Mak for k = 1, 2, . . . , 5 in Table III.

1) Online Application of Estimated Stability Region:
Suppose that at time t = 0, MG 5 enters an islanded mode
and the DSO would like to know if the remaining 4 networked
MGs can be stabilized at a pre-dispatched operating point.
During offline planning, Algorithm 3 computes a Lyapunov
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Fig. 12. Time-domain simulation of the 3 networked MGs with x(0) =
[0.1,−0.1, 0, 0]�: (a) angle deviation and (b) frequency deviation.

Fig. 13. IEEE 123-node Test Feeder [2].

function Vθ∗ and a stability region S0.69 for the contingency.
S0.69 can be leveraged during real-time operation, in order
to determine if the remaining MGs can tolerate the distur-
bance due to islanding of MG 5. The initial condition x(0)
can be obtained by collecting pre-event measurements at the
MG interfaces. In this case study, Vθ∗(x(0)) = 0.12 < 0.69,
suggesting that x(0) ∈ S0.69. Thus, without any simula-
tion, the DSO can almost instantaneously conclude that all
interface variables tend to their pre-dispatched values. Such
a conclusion is confirmed by the time-domain simulation in
Figure 14-(a).

2) Learned Lyapunov Function and Estimated Stability
Region: It takes 2901.69 seconds to learn the Lyapunov
function Vθ∗ . Figure 15 visualizes Vθ∗ and V̇θ∗ . With Vθ∗ ,
SREst computes an stability region which is visualized

Fig. 14. Time-domain simulation of interface variables in the 123-node
feeder: (a) with MG 5 islanded; (b) with x(0) = [−0.6, 0.2, 0, 0]� rad.

Fig. 15. (a) Vθ∗ and (b) V̇θ∗ in the 123-node feeder.

in Figure 16 and it suggests that the solution to (18) is
[−0.66, 0.03, 0.06, 0.22]�. Figure 16-(a) visualizes the region
S0.69 in the δ′1-δ′2 plane with δ′3 = 0.06 and δ′4 = 0.22. It is
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Fig. 16. (a) SR and VR around the touching point with δ′3 = 0.06 and
ω′3 = 0.22; (b) comparison between the proposed (NN) and conventional
(cvt.) methods with δ′3 = ω′4 = 0.

observed that the touching point of the boundaries of S0.69
and B0.7 is (−0.66, 0.03).

3) Comparison: The comparison between the stability
region estimated based on the proposed and conventional
methods is shown in Figure 16-(b). Denoted by S ′′′ the SR
estimated based on the quadratic Lyapunov function. Suppose
that pre-event operating condition x(0) is [−0.6, 0.2, 0, 0]�.
Such a condition is outside S ′′′ but inside S0.69. Therefore,
S0.69 can conclude that the system trajectory will converge to
the equilibrium whereas S ′′′ cannot. The time-domain simu-
lation shown in Figure 14-(b) confirms the convergence of the
states given the pre-event condition.

Next, we compare the proposed approach with the SOS-
based approach [21]. When being applied to the IEEE 123-
node feeder, the procedure of Lyapunov function searching

Fig. 17. Block diagram of the k-th PE interface.

in [21] stalls in a personal laptop, as it involves the operation
of a 43034 × 43034 (26.4 GB) array. However, a neural
network-structured Lyapunov function can be obtained by the
proposed approach in the same personal laptop, as shown in
Section IV-C. Therefore, it can be observed that the proposed
approach requires less computation power in addressing the
123-node feeder, compared with the SOS-based approach
in [21].

V. CONCLUDING REMARKS

In this paper, we propose a TSA tool for networked
microgrids based on tailor-designed Neural Lyapunov meth-
ods. Assessing transient stability is formulated as a problem
of estimating the stability region of networked microgrids. We
use neural networks to learn a Lyapunov function in the state
space. The optimal stability region is estimated based on the
function learned, and it can be used for both offline design
and online operation. The effectiveness of the proposed TSA
tool is tested and validated in 3 scenarios: 1) a grid-connected
microgrid, 2) a three networked microgrids with heterogeneous
dynamics, and 3) the IEEE 123-node test feeder. Future work
will investigate algorithms to speed up the computation for
learning a Lyapunov function in larger networked microgrids.

APPENDIX A
DETAILED MODEL OF PE INTERFACES

The typical components of a PE interface are summarized in
Figure 17. Next, we describe the dynamics of the PE interface
by presenting the dynamics of each component in Figure 17.

A. Power Controller

As shown in Figure 17, the power controller includes two
functional blocks: a power calculator, and a droop controller.
The power calculator takes as inputs the instantaneous voltage
vok and current iok from the LC filter, and it aims to compute
the fundamental components of real and reactive power Pk and
Qk of the k-th interface. The dynamics of the power calculator
can be described by [41]

Ṗk = −ωcPk + ωc
(
vodkiodk + voqkioqk

)
(26a)

Q̇k = −ωcQk + ωc
(
voqkiodk − vodkioqk

)
(26b)

where ωc denotes the cut-off frequency of the low-pass filters
in the power calculator [41]; and vodk (iodk) and voqk (ioqk) are
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the direct and quadrature components of vok (iok). The droop
controller leverages some local signals as the power balance
indicators [2], and the it tunes the interface response accord-
ing to the measurements of these signals. Common selections
of these local signals include frequency, voltage magnitude
and voltage angle that are measured at the microgrid PCC.
Specifically, the frequency droop control takes the terminal
frequency ωk as the balance indicator for real power [2].
Such a control strategy requires no communication between
PE interfaces and it introduces the following dynamics:

δ̇k = ωk − ωn, Mfkω̇k = −Dfk(ωk − ωn)+ P∗k − Pk (27)

where ωn denotes the nominal frequency; Mfk and Dfk are
control parameters for the frequency droop controller; and P∗k
and Q∗k are dispatched by the DSO. The angle droop control
considers the voltage phase angle δk as the balance indica-
tor [2], [42], [43]. Though the angle droop control requires
communication, it provides better frequency regulation [42],
compared with the frequency droop control. The angle droop
control will introduce the following dynamics:

Makδ̇k +
(
δk − δ∗k

) = Dak
(
P∗k − Pk

)
, ωk = δ̇k + ωn (28)

where Mak and Dak denote control parameters of the angle
droop controllers; and δ∗k and P∗k are dispatched by the DSO.
Besides, the droop controller tunes the setpoint v∗ok of the
voltage controller in Figure 17 according to

Mvkv̇∗odk = Dvk
(
Q∗k − Qk

)− (
v∗odk − E∗k

)
, v∗oqk = 0 (29)

where v∗odk and v∗oqk are the direct and quadrature components
of v∗ok, respectively; and E∗k , Q∗k are dispatched by the DSO.

B. Voltage and Current Controllers

The dynamics of the voltage and current controllers in
Figure 17 can be described by the following differential and
algebraic equations [41]:

ξ̇dk = v∗odk − vodk, ξ̇qk = v∗oqk − voqk, (30a)

ψ̇dk = i∗ldk − ildk, ψ̇qk = i∗oqk − ilqk, (30b)

i∗ldk = Kivkξdk + Fkiodk + Kpvk
(
v∗odk − vodk

)− ωnCfkvoqk

(30c)

i∗lqk = Kivkξqk + Fkioqk + Kpvk

(
v∗oqk − voqk

)
+ ωnCfkvodk

(30d)

v∗idk = Kickψdk + Kpck
(
i∗ldk − ildk

)− ωnLfkilqk (30e)

v∗iqk = Kickψqk + Kpck

(
i∗lqk − ilqk

)
+ ωnLfkildk (30f)

where ξdk and ξqk are state variables of the voltage controller;
ψdk and ψqk are state variables of the current controller; Kivk,
Fk, and Kpvk are control parameters of the voltage controller;
Cfk and Lfk are capacitance and inductance of the output LC
filter; i∗ldk, i∗lqk are the setpoints of the current controller; and
v∗idk, v∗iqk are the setpoints of the inverter in Figure 17.

C. Output Filter

With the switching dynamics ignored in the inverter, we
have v∗idk = vidk and v∗iqk = viqk, where vidk and viqk are

TABLE IV
PE INTERFACE PARAMETERS OF FIGURE 2 OF THE MANUSCRIPT

two state variables of the output filter associated with the
k-th interface. The following differential equations describe
the dynamics of the output filter associated with the k-th PE
interface [41]:

Lfki̇ldk = −rfkild + ωkLfkilqk + vidk − vodk (31a)

Lfki̇lqk = −rfkilq + ωkLfkildk + viqk − voqk (31b)

Cfkv̇odk = ωkCfkvoqk + ildk − iodk (31c)

Cfkv̇oqk = ωkCfkvodk + ilqk − ioqk (31d)

where rfk is the resistance of the output filter; and vodk, voqk,
iodk and ioqk are the variables interfacing with the distribution
system network. Equations (26)-(31) define detailed dynamics
of a PE interface.

APPENDIX B
SIMULATION PARAMETERS OF FIGURE 2

This section aims to provide parameters for the simulation
shown in Figure 2. The topology of the system is shown in
Figure 5 (the parameters marked in Figure 5 are not for this
test case). The voltage base Vb = 381.05 V and the power
base Sb = 10 kVA. The nominal frequency ωn is 50 Hz. The
detailed model of the PE interface includes (26), (28)-(31)
with parameters [41] listed in Table IV. The resistance rline
and inductance Lline of the tie line are shown in Table IV. At
Bus 2, a three-phase-to-ground fault occurs at the 1-st second
and it is cleared 3 cycles later. Figure 2 shows the system
response to such an event.
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