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Abstract. We propose §-complete decision procedures for solving satis-
fiability of nonlinear SMT problems over real numbers that contain uni-
versal quantification and a wide range of nonlinear functions. The meth-
ods combine interval constraint propagation, counterexample-guided syn-
thesis, and numerical optimization. In particular, we show how to handle
the interleaving of numerical and symbolic computation to ensure delta-
completeness in quantified reasoning. We demonstrate that the proposed
algorithms can handle various challenging global optimization and con-
trol synthesis problems that are beyond the reach of existing solvers.

1 Introduction

Much progress has been made in the framework of delta-decision procedures
for solving nonlinear Satisfiability Modulo Theories (SMT) problems over real
numbers [1,2]. Delta-decision procedures allow one-sided bounded numerical er-
rors, which is a practically useful relaxation that significantly reduces the com-
putational complexity of the problems. With such relaxation, SMT problems
with hundreds of variables and highly nonlinear constraints (such as differen-
tial equations) have been solved in practical applications [3]. Existing work in
this direction has focused on satisfiability of quantifier-free SMT problems. Go-
ing one level up, SMT problems with both free and universally quantified vari-
ables, which correspond to JV-formulas over the reals, are much more expres-
sive. For instance, such formulas can encode the search for robust control laws in
highly nonlinear dynamical systems, a central problem in robotics. Non-convex,
multi-objective, and disjunctive optimization problems can all be encoded as
FV-formulas, through the natural definition of “finding some x such that for all
other z’, z is better than z’ with respect to certain constraints.” Many other
examples from various areas are listed in [4].

Counterexample-Guided Inductive Synthesis (CEGIS) [5] is a framework for
program synthesis that can be applied to solve generic exists-forall problems. The
idea is to break the process of solving 3V-formulas into a loop between synthe-
sis and verification. The synthesis procedure finds solutions to the existentially



quantified variables and gives the solutions to the verifier to see if they can be
validated, or falsified by countereramples. The counterexamples are then used
as learned constraints for the synthesis procedure to find new solutions. This
method has been shown effective for many challenging problems, frequently gen-
erating more optimized programs than the best manual implementations [5].
However, a direct application of CEGIS to decision problems over real numbers
suffers from several problems. CEGIS is complete in finite domains because it can
explicitly enumerate solutions, which can not be done in continuous domains.
Also, CEGIS ensures progress by avoiding duplication of solutions, while due to
numerical sensitivity, precise control over real numbers is difficult. In this paper
we propose methods that bypass such difficulties.

We propose an integration of the CEGIS method in the branch-and-prune
framework as a generic algorithm for solving nonlinear 3V-formulas over real
numbers and prove that the algorithm is §-complete. We achieve this goal by
using CEGIS-based methods for turning universally-quantified constraints into
pruning operators, which is then used in the branch-and-prune framework for the
search for solutions on the existentially-quantified variables. In doing so, we take
special care to ensure correct handling of numerical errors in the computation,
so that d-completeness can be established for the whole procedure.

The paper is organized as follows. We first review the background, and then
present the details of the main algorithm in Section 3. We then give a rigorous
proof of the J-completeness of the procedure in Section 4. We demonstrated
the effectiveness of the procedures on various global optimization and Lyapunov
function synthesis problems in Section 5.

Related Work. Decision procedures for quantified formulas in real arithmetic
have been studied in various areas such as symbolic computation and constraint
solving. Cylindrical algebraic decomposition [6]) is a well-known method for
quantifier elimination for formulas that only contain polynomials. The proce-
dures are known to have very high computational complexity (double exponen-
tial [7]), and can not handle problems with transcendental functions. Quan-
tified constraints over real numbers have been studied in constraint program-
ming [8,9,10,11,12,13]. In particular, the work in [10,11,12] develops quasi-decision
procedures for solving quantified constraints over the reals with a numerically-
relaxed notion of completeness [14] that is closely related to the notion of delta-
completeness here. In comparison, the focus of our work (apart from improving
scalability) can be seen as an extension of the same line of work that further pa-
rameterizes the procedures with explicit bounds on the numerical errors, which
requires the design of various new techniques such as double-sided error control
(Section 3.2). State-of-the-art SMT solvers such as CVC4 [15] and Z3 [16] pro-
vide limited quantified reasoning support [17,18,19,20] for decidable fragments
of first-order logic and theories. Optimization Modulo Theories (OMT) is a new
field that focuses on solving a restricted form of quantified reasoning [21,22,23],
focusing on linear formulas. Generic approaches for solving exists-forall problems
based on the CEGIS framework have typically been used as a heuristic procedure
without aiming for completeness guarantees [24].



2 Preliminaries

2.1 Delta-Decisions and CNF"-Formulas

We consider first-order formulas over real numbers that can contain arbitrary
nonlinear functions that can be numerically approximated, such as polynomials,
exponential, and trignometric functions. Theoretically, such functions are called
Type-2 computable functions [25]. We write this language as Lg,, formally de-
fined as:

Definition 1 (The Lg, Language). Let F be the set of Type-2 computable
functions. We define Lr, to be the following first-order language:

t:=ux| f(t), where f € F, possibly 0-ary (constant);
p:=tx)>0|tlx) >0 pAp|pVe|Irp| Ve

Remark 1. Negations are not needed as part of the base syntax, as it can be
defined through arithmetic: (¢ > 0) is simply —t > 0. Similarly, an equality
t =0isjust t > OA—t > 0. In this way we can put the formulas in normal forms
that are easy to manipulate.

We will focus on the 3V-formulas in Lr, in this paper. Decision problems for
such formulas are equivalent to satisfiability of SMT with universally quantified
variables, whose free variables are implicitly existentially quantified.

It is clear that, when the quantifier-free part of an 3V formula is in Conjunc-
tive Normal Form (CNF), we can always push the universal quantifiers inside
each conjunct, since universal quantification commute with conjunctions. Thus
the decision problem for any JV-formula is equivalent to the satisfiability of
formulas in the following normal form:

Definition 2 (CNF" Formulas in Lg, ). We say an Lg, -formula ¢ is in the
CNFY, if it is of the form

m ki
e(@) = A\ (vy(\/ cii(.y) (1)
i=0 j=0

where c;; are atomic constraints. Fach universally quantified conjunct of the

formula, i.e.,
ki

vy(\/ ¢ij(z,y))
Jj=0
18 called as a V-clause. Note that V-clauses only contain disjunctions and no

nested conjunctions. If all the V-clauses are vacuous, we say @(x) is a ground
SMT formula.

The algorithms described in this paper will assume that an input formula is in
CNFY form. We can now define the §-satisfiability problems for CNF"-formulas.



Definition 3 (Delta-Weakening/Strengthening). Let 6 € QT be arbitrary.
Consider an arbitrary CNF" -formula of the form

o(x) = Zl\ (Vy({i/ fij(x,y) o 0))

where o € {>,>}. We define the d-weakening of ¢(x) to be:

e@) = N\ (Yo fley) = -9)).
i=0 =0

Namely, we weaken the right-hand sides of all atomic formulas from 0 to —6.
Note how the difference between strict and nonstrict inequality becomes unim-
portant in the §-weakening. We also define its dual, the §-strengthening of p(x):

m

ki
e*@) = N\ (vu(\ fis(@,y) = +9)).
j=0

=0

Since the formulas in the normal form no longer contain negations, the relaxation
on the atomic formulas is implied by the original formula (and thus weaker), as
was easily shown in [1].

Proposition 1. For any ¢ and § € QF, =9 is logically weaker, in the sense
that © — ¢ =% is always true, but not vice versa.

Ezxample 1. Consider the formula

Vy f(z,y) =0.
It is equivalent to the CNFY-formula

(Yy(=f(z,y) > 0) AVy(f(x,y) >0))

whose §-weakening is of the form

(Vy(=f(z,y) = =6) AVy(f(z,y) = =9))

which is logically equivalent to

Vy(llf (2, 9)ll < 6).

We see that the weakening of f(x,y) = 0 by ||f(z,y)|| < ¢ defines a natural
relaxation.

Definition 4 (Delta-Completeness). Let 6 € Q1 be arbitrary. We say an
algorithm is §-complete for IV-formulas in Lg,, if for any input CNE" -formula
@, it always terminates and returns one of the following answers correctly:

— unsat: ¢ is unsatisfiable.
— 0-sat: ¢~ 0 is satisfiable.

When the two cases overlap, it can return either answer.



2.2 The Branch-and-Prune Framework

A practical algorithm that has been shown to be é-complete for ground SMT
formulas is the branch-and-prune method developed for interval constraint prop-
agation [26]. A description of the algorithm in the simple case of an equality
constraint is in Algorithm 1.

Algorithm 1 Branch-and-Prune

1: function SOWVE(f(z) =0, By, 9)

2: S {BI}

3: while S # () do

4: B + S.pop()

5: B« FixedPoint()\B.B N Prune(B, f(z) = 0), B)
6: if B # () then

7: if ||f(B’)]] > ¢ then

8: {Bl,BQ} — Branch(B’)
9: S.pUSh({Bl7 BQ})
10: else
11: return J-sat
12: end if
13: end if
14: end while
15: return unsat

16: end function

The procedure combines pruning and branching operations. Let B be the set
of all boxes (each variable assigned to an interval), and C a set of constraints in
the language. FixedPoint(g, B) is a procedure computing a fixedpoint of a function
g : B — B with an initial input B. A pruning operation Prune : B x C — B takes
a box B € B and a constraint as input, and returns an ideally smaller box B’ € B
(Line 5) that is guaranteed to still keep all solutions for all constraints if there is
any. When such pruning operations do not make progress, the Branch procedure
picks a variable, divides its interval by halves, and creates two sub-problems B
and Bz (Line 8). The procedure terminates if either all boxes have been pruned
to be empty (Line 15), or if a small box whose maximum width is smaller than
a given threshold § has been found (Line 11). In [2], it has been proved that
Algorithm 1 is §-complete iff the pruning operators satisfy certain conditions for
being well-defined (Definition 5).

3 Algorithm

The core idea of our algorithm for solving CNF"-formulas is as follows. We
view the universally quantified constraints as a special type of pruning opera-
tors, which can be used to reduce possible values for the free variables based



on their consistency with the universally-quantified variables. We then use these
special V-pruning operators in an overall branch-and-prune framework to solve
the full formula in a d-complete way. A special technical difficulty for ensuring
d-completeness is to control numerical errors in the recursive search for coun-
terexamples, which we solve using double-sided error control. We also improve
quality of counterexamples using local-optimization algorithms in the V-pruning
operations, which we call locally-optimized counterezamples.

In the following sections we describe these steps in detail. For notational
simplicity we will omit vector symbols and assume all variable names can directly
refer to vectors of variables.

3.1 V-Clauses as Pruning Operators

Consider an arbitrary CN F"-formula?

m ki
e@) = N\ (W(V fuley) 2 0).
i=0 j=0

It is a conjunction of V-clauses as defined in Definition 2. Consequently, we
only need to define pruning operators for V-clauses so that they can be used in
a standard branch-and-prune framework. The full algorithm for such pruning
operation is described in Algorithm 2.

In Algorithm 2, the basic idea is to use special y values that witness the
negation of the original constraint to prune the box assignment on z. The two
core steps are as follows.

1. Counterexample generation (Line 4 to 9). The query for a counterexample 1)
is defined as the negation of the quantifier-free part of the constraint (Line 4).
The method Solve(y, 1, ) means to obtain a solution for the variables y o-
satisfying the logic formula . When such a solution is found, we have a
counterexample that can falsify the V-clause on some choice of x. Then we
use this counterexample to prune on the domain of x, which is currently B,.
The strengthening operation on ¢ (Line 5), as well as the choices of € and
¢’, will be explained in the next subsection.

2. Pruning on z (Line 10 to 13). In the counterexample generation step, we have
obtained a counterexample b. The pruning operation then uses this value to
prune on the current box domain B,.. Here we need to be careful about the
logical operations. For each constraint, we need to take the intersection of
the pruned results on the counterexample point (Line 11). Then since the
original clause contains the disjunction of all constraints, we need to take
the box-hull (| |) of the pruned results (Line 13).

4 Note that without loss of generality we only use nonstrict inequality here, since in
the context of §-decisions the distinction between strict and nonstrict inequalities as
not important, as explained in Definition 3.



Algorithm 2 V-Clause Pruning

1: function PRUNE(B,, By, Yy \/f:0 fi(z,y) > 0,0, ¢, 9)

2 repeat

3 BPV «— B,

4: Y N filz,y) <0

5: 1€ < Strengthen(v), ¢)

6: b «+ Solve(y, T, ") >0 < ¢ <e <6 should hold.
7 if b= 0 then

8 return B, > No counterexample found, stop pruning.
9: end if
10: for i € {0,...,k} do
11: B+ B, N Prune(Bw, fi(x,b) > O)
12: end for
13 B, « ", B;
14: until B, # B¢V
15: return B,

16: end function

We can now put the pruning operators defined for all V-clauses in the overall
branch-and-prune framework shown in Algorithm 1.

The pruning algorithms are inspired by the CEGIS loop, but are different
in multiple ways. First, we never explicitly compute any candidate solution for
the free variables. Instead, we only prune on their domain boxes. This ensures
that the size of domain box decreases (together with branching operations), and
the algorithm terminates. Secondly, we do not explicitly maintain a collection
of constraints. Each time the pruning operation works on previous box — i.e.,
the learning is done on the model level instead of constraint level. On the other
hand, being unable to maintain arbitrary Boolean combinations of constraints
requires us to be more sensitive to the type of Boolean operations needed in the
pruning results, which is different from the CEGIS approach that treats solvers
as black boxes.

3.2 Double-Sided Error Control

To ensure the correctness of Algorithm 2, it is necessary to avoid spurious coun-
terexamples which do not satisfy the negation of the quantified part in a V-clause.
We illustrate this condition by consider a wrong derivation of Algorithm 2 where
we do not have the strengthening operation on Line 5 and try to find a coun-
terexample by directly executing b < Solve(y, ¢ = /\f:0 fi(z,y) < 0,96). Note
that the counterexample query 1 can be highly nonlinear in general and not
included in a decidable fragment. As a result, it must employ a delta-decision
procedure (i.e. Solve with ¢’ € Q™) to find a counterexample. A consequence of
relying on a delta-decision procedure in the counterexample generation step is



that we may obtain a spurious counterexample b such that for some x = a:

k k

/\ fi(a,b) <4 instead of /\ fila,b) < 0.

i=0 =0

Consequently the following pruning operations fail to reduce their input boxes
because a spurious counterexample does not witness any inconsistencies between
x and y. As a result, the fixedpoint loop in this V-Clause pruning algorithm
will be terminated immediately after the first iteration. This makes the outer-
most branch-and-prune framework (Algorithm 1), which employs this pruning
algorithm, solely rely on branching operations. It can claim that the problem
is d-satisfiable while providing an arbitrary box B as a model which is small
enough (||B|| < ) but does not include a é-solution.

To avoid spurious counterexamples, we directly strengthen the counterexam-
ple query with € € QT to have

k
Ppte = /\ fila,b) < —e.
i=0

Then we choose a weakening parameter §’ € Q in solving the strengthened for-
mula. By analyzing the two possible outcomes of this counterexample search, we
show the constraints on ¢’, €, and § which guarantee the correctness of Algo-
rithm 2:

— ¢’-sat case: We have a and b such that /\f:O fila,b) < —e 4+ . Fory=1»
to be a valid counterexample, we need —e + ¢’ < 0. That is, we have

§ <e. (2)

In other words, the strengthening factor ¢ should be greater than the weak-
ening parameter ¢’ in the counterexample search step.

— unsat case: By checking the absence of counterexamples, it proved that
Yy \/f:0 filz,y) > —e for all x € B,. Recall that we want to show that

Yy \/f:O fi(x,y) > —6 holds for some z = a when Algorithm 1 uses this
pruning algorithm and returns d-sat. To ensure this property, we need the
following constraint on € and §:

e <. (3)

3.3 Locally-Optimized Counterexamples

The performance of the pruning algorithm for CNF-formulas depends on the
quality of the counterexamples found during the search.

Figure la illustrates this point by visualizing a pruning process for an un-
constrained minimization problem, 3z € XoVy € Xof(z) < f(y). As it finds
a series of counterexamples CE;, CEs, CE3, and CE,4, the pruning algorithms
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(a) Without local optimization. (b) With local optimization.

Fig. 1: Illustrations of the pruning algorithm for CNF"-formula with and without
using local optimization.

uses those counterexamples to contract the interval assignment on X from X
to X, X5, X3, and X4 in sequence. In the search for a counterexample (Line 6
of Algorithm 2), it solves the strengthened query, f(z) > f(y) + J. Note that
the query only requires a counterexample y = b to be §-away from a candidate
x while it is clear that the further a counterexample is away from candidates,
the more effective the pruning algorithm is.

Based on this observation, we present a way to improve the performance of
the pruning algorithm for CNF"-formulas. After we obtain a counterexample b,
we locally-optimize it with the counterexample query 1 so that it “further vio-
lates” the constraints. Figure 1b illustrates this idea. The algorithm first finds
a counterexample CE; then refines it to CE] by using a local-optimization al-
gorithm (similarly, CE; — CE}). Clearly, this refined counterexample gives a
stronger pruning power than the original one. This refinement process can also
help the performance of the algorithm by reducing the number of total iterations
in the fixedpoint loop.

The suggested method is based on the assumption that local-optimization
techniques are cheaper than finding a global counterexample using interval prop-
agation techniques. In our experiments, we observed that this assumption holds
practically. We will report the details in Section 5.

4 4-Completeness

We now prove that the proposed algorithm is d-complete for arbitrary CNFY
formulas in Lg.. In the work of [2]|, J-completeness has been proved for branch-
and-prune for ground SMT problems, under the assumption that the pruning
operators are well-defined. Thus, the key for our proof here is to show that the
V-pruning operators satisfy the conditions of well-definedness.

The notion of a well-defined pruning operator is defined in [2] as follows.



Definition 5. Let ¢ be a constraint, and B be the set of all bores in R™. A
pruning operator is a function Prune : B x C — B. We say such a pruning
operator is well-defined, if for any B € B, the following conditions are true:

1. Prune(B, ¢) C B.

2. BN{a € R™: ¢(a) is true.} C Prune(B, ¢).

3. Write Prune(B, ¢) = B’. There exists a constant ¢ € Q*, such that, if B’ # ()
and ||B'|| < € for some € € Q% then for all a € B', ¢ (a) is true.

We will explain the intuition behind these requirements in the next proof, which
aims to establish that Algorithm 2 defines a well-defined pruning operator.

Lemma 1 (Well-definedness of V-Pruning). Consider an arbitrary ¥-clause
in the generic form

() =y (fil@,y) = 0V ..V fiu(w,y) = 0).

Suppose the pruning operators for f1 > 0, ..., fr > 0 are well-defined, then the
V-pruning operation for c¢(x) as described in Algorithm 2 is well-defined.

Proof. We prove that the pruning operator defined by Algorithm 2 satisfies the
three conditions in Definition 5. Let By, ..., Br be a sequence of boxes, where By
is the input box B, and By, is the returned box B, which is possibly empty.

The first condition requires that the pruning operation for c¢(z) is reductive.
That is, we want to show that B, C BY™Y holds in Algorithm 2. If it does not
find a counterexample (Line 8), we have B, = BP'V. So the condition holds
trivially. Consider the case where it finds a counterexample b. The pruned box
B, is obtained through box-hull of all the B; boxes (Line 13), which are results
of pruning on BP*" using ordinary constraints of the form f;(x,b) > 0 (Line 11),
for a counterexample b. Following the assumption that the pruning operators are
well-defined for each ordinary constraint f; used in the algorithm, we know that
B; C BP™ holds as a loop invariant for the loop from Line 10 to Line 12. Thus,
taking the box-hull of all the B;, we obtain B, that is still a subset of B2™V.

The second condition requires that the pruning operation does not eliminate
real solutions. Again, by the assumption that the pruning operation on Line 11
does not lose any valid assignment on x that makes the V-clause true. In fact,
since y is universally quantified, any choice of assignment y = b will preserve
solution on x as long as the ordinary pruning operator is well-defined. Thus, this
condition is easily satisfied.

The third condition is the most nontrivial to establish. It ensures that when
the pruning operator does not prune a box to the empty set, then the box should
not be “way off”, and in fact, should contain points that satisfy an appropriate
relaxation of the constraint. We can say this is a notion of “faithfulness” of
the pruning operator. For constraints defined by simple continuous functions,
this can be typically guaranteed by the modulus of continuity of the function
(Lipschitz constants as a special case). Now, in the case of V-clause pruning, we
need to prove that the faithfulness of the ordinary pruning operators that are



used translates to the faithfulness of the V-clause pruning results. First of all, this
condition would not hold, if we do not have the strengthening operation when
searching for counterexamples (Line 5). As is shown in Example 1, because of
the weakening that d-decisions introduce when searching for a counterexample,
we may obtain a spuritous counterexample that does not have pruning power. In
other words, if we keep using a wrong counterexample that already satisfies the
condition, then we are not able to rule out wrong assignments on x. Now, since
we have introduced e-strengthening at the counterexample search, we know that
b obtained on Line 6 is a true counterexample. Thus, for some = = a, f;(a,b) < 0
for every i. By assumption, the ordinary pruning operation using b on Line 11
guarantees faithfulness. That is, suppose the pruned result B; is not empty and
||B;|| < e, then there exists constant ¢; such that f;(z,b) > —c¢;e is true. Thus,
we can take the ¢ = min,; ¢; as the constant for the pruning operator defined by
the full clause, and conclude that the disjunction \/f:0 fi(z,y) < —ce holds for
1B.] < =.

Using the lemma, we follow the results in [2], and conclude that the branch-and-
prune method in Algorithm 1 is delta-complete:

Theorem 1 (5-Completeness). For any d € Q, using the proposed V-pruning
operators defined in Algorithm 2 in the branch-and-prune framework described
in Algorithm 1 is §-complete for the class of CNFE" -formulas in Lg,, assuming
that the pruning operators for all the base functions are well-defined.

Proof. Following Theorem 4.2 (6-Completeness of ICP.) in [2], a branch-and-
prune algorithm is §-complete iff the pruning operators in the algorithm are
all well-defined. Following Lemma 1, Algorithm 2 always defines well-defined
pruning operators, assuming the pruning operators for the base functions are
well-defined. Consequently, Algorithm 2 and Algorithm 1 together define a delta-
complete decision procedure for CNF”-problems in L -

5 Evaluation

Implementation We implemented the algorithms on top of dReal [27], an open-
source delta-SMT framework. We used IBEX-lib [28] for interval constraints
pruning and CLP [29] for linear programming. For local optimization, we used
NLopt [30]. In particular, we used SLSQP (Sequential Least-Squares Quadratic
Programming) local-optimization algorithm [31] for differentiable constraints
and COBYLA (Counstrained Optimization BY Linear Approximations) local-
optimization algorithm [32] for non-differentiable constraints. The prototype
solver is able to handle 3V-formulas that involve most standard elementary func-
tions, including power, exp, log, /-, trigonometric functions (sin, cos, tan), in-
verse trigonometric functions (arcsin, arccos, arctan), hyperbolic functions (sinh,
cosh, tanh), etc.

Experiment environment All experiments were ran on a 2017 Macbook Pro
with 2.9 GHz Intel Core i7 and 16 GB RAM running MacOS 10.13.4. All code
and benchmarks are available at https://github.com/dreal/CAV18.
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Name Solution Time (sec)

Global [No L—Opt.[ L-Opt. |No L—Opt.[ L-Opt. [Speed Up
Ackley 2D 0.00000|  0.00000| 0.00000 0.0579| 0.0047 12.32
Ackley 4D 0.00000|  0.00005| 0.00000 8.2256| 0.1930 42.62
Aluffi Pentini -0.35230| -0.35231| -0.35239 0.0321| 0.1868 0.17
Beale 0.00000|  0.00003| 0.00000 0.0317| 0.0615 0.52
Bohachevskyl 0.00000| 0.00006| 0.00000 0.0094| 0.0020 4.70
Booth 0.00000 0.00006 0.00000 0.5035| 0.0020 251.75
Brent 0.00000| 0.00006| 0.00000 0.0095| 0.0017 5.59
Bukin6 0.00000| 0.00003| 0.00003 0.0093| 0.0083 1.12
Cross in Tray -2.06261| -2.06254| -2.06260 0.5669| 0.1623 3.49
Easom -1.00000| -1.00000| -1.00000 0.0061| 0.0030 2.03
EggHolder -959.64070(-959.64030(-959.64031 0.0446| 0.0211 2.11
Holder Table2 -19.20850| -19.20846| -19.20845 52.9152{41.7004 1.27
Levi N13 0.00000|  0.00000| 0.00000 0.1383| 0.0034 40.68
Ripple 1 -2.20000| -2.20000| -2.20000 0.0059| 0.0065 0.91
Schaffer F6 0.00000| 0.00004| 0.00000 0.0531| 0.0056 9.48
Testtube Holder | -10.87230| -10.87227| -10.87230 0.0636| 0.0035 18.17
Trefethen -3.30687| -3.30681| -3.30685 3.0689| 1.4916 2.06
W Wavy 0.00000|  0.00000| 0.00000 0.1234| 0.0138 8.94
Zettl -0.00379| -0.00375| -0.00379 0.0070| 0.0069 1.01
Rosenbrock Cubic| 0.00000{ 0.00005| 0.00002 0.0045| 0.0036 1.25
Rosenbrock Disk 0.00000| 0.00002| 0.00000 0.0036| 0.0028 1.29
Mishra Bird -106.76454|-106.76449|-106.76451 1.8496| 0.9122 2.03
Townsend -2.02399| -2.02385| -2.02390 2.6216| 0.5817 4.51
Simionescu -0.07262| -0.07199| -0.07200 0.0064| 0.0048 1.33

Table 1: Experimental results for nonlinear global optimization problems: The
first 19 problems (Ackley 2D — Zettl) are unconstrained optimization problems
and the last five problems (Rosenbrock Cubic — Simionescu) are constrained
optimization problems. We ran our prototype solver over those instances with
and without local-optimization option (“L-Opt.” and “No L-Opt.” columns) and
compared the results. We chose § = 0.0001 for all instances.

Parameters In the experiments, we chose the strengthening parameter ¢ = 0.999
and the weakening parameter in the counterexample search ' = 0.985. In each
call to NLopt, we used le—6 for both of absolute and relative tolerances on
function value, le—3 seconds for a timeout, and 100 for the maximum number
of evaluations. These values are used as stopping criteria in NLopt.

5.1 Nonlinear Global Optimization

We encoded a range of highly nonlinear 3V-problems from constrained and un-
constrained optimization literature [33,34|. Note that the standard optimization
problem

min f(z) s.t. p(z), = €R?,



(a) Ackley Function. (b) EggHolder Function.

(e) Ripple 1 Function. (f) Testtube Holder Function.

Fig. 2: Nonlinear Global Optimization Examples.

can be encoded as the logic formula:

o() /\Vy(so(y) = f(x) < f(y))-

As plotted in Figure 2, these optimization problems are non-trivial: they
are highly non-convex problems that are designed to test global optimization or
genetic programming algorithms. Many such functions have a large number of
local minima. For example, Ripple 1 Function [33]

2 x1—0.1\2
fz1,x0) = Z —e~20082) (o) (sin®(57z;) + 0.1 cos? (5007x;))
i=1



defined in z; € [0, 1] has 252004 local minima with the global minima f(0.1,0.1) =
—2.2. As a result, local-optimization algorithms such as gradient-descent would
not work for these problems for itself. By encoding them as 3V-problems, we can
perform guaranteed global optimization on these problems.

Table 1 provides a summary of the experiment results. First, it shows that we
can find minimum values which are close to the known global solutions. Second,
it shows that enabling the local-optimization technique speeds up the solving
process significantly for 20 instances out of 23 instances.

5.2 Synthesizing Lyapunov Function for Dynamical System

We show that the proposed algorithm is able to synthesize Lyapunov functions
for nonlinear dynamic systems described by a set of ODEs:

@(t) = fi(=(t), Va(t) € Xi.

Our approach is different from a recent related-work [35] where they used
dReal only to verify a candidate function which was found by a simulation-
guided algorithm. In contrast, we want to do both of search and verify steps by
solving a single 3V-formula. Note that to verify a Lyapunov candidate function v :
X — RT, we need to show that the function v satisfies the following conditions:

Ve e X\0v(x)(0)=0

YV € X Vo(z(t)? - fi(z(t)) <O0.
We assume that a Lyapunov function is a polynomial of some fixed degrees
over x, that is, v(z) = zT Pz where z is a vector of monomials over x and

P is a symmetric matrix. Then, we can encode this synthesis problem into the
JV-formula:

3P [(v(z) = (2T P2))A
(Vx € X\ 0 v(x)(0) = 0)A
(Ve € X Vu(z(t))" - fi(x(t) < 0)]

In the following sections, we show that we can handle two examples in [35].

Normalized Pendulum Given a standard pendulum system with normalized

parameters
j?l o xT9
.’iig - sin(xl) — X2

and a quadratic template for a Lyapunov function v(z) = &’ Pz = ciz179 +
273 + ¢33, we can encode this synthesis problem into the following 3V-formula:
Jercacs Yoy wy [((50cszixy + 5023¢y 4+ 50z3cs > 0.5)A
(100cy 2122 + 50x203 + (—22 — sin(z1)(50x1c3 + 10022¢2)) < —0.5))V
=((0.01 < 2 +a3) A (27 + 23 < 1))]



Our prototype solver takes 44.184 seconds to synthesize the following function
as a solution to the problem for the bound ||| € [0.1,1.0] and ¢; € [0.1,100]
using § = 0.05:

v = 40.68437 29 + 35.687027 + 84.390623.

Damped Mathieu System Mathieu dynamics are time-varying and defined
by the following ODEs:

Ej - {xQ - (2afsin(t))x1

Using a quadratic template for a Lyapunov function v(z) = 7 Px = ciz 20+
273 + c3w3, we can encode this synthesis problem into the following 3V-formula:

Jercacs Yy wat [(50z1w2cs + 5023 ¢ + 5025¢3 > 0)A
(100c1x1 29 + 502900 + (—22 — 21 (2 + sin(t))) (50z1co + 100x2c3)
Vo((0.01 a2 +22) A 01 <AL A (22422 < 1))]

Our prototype solver takes 26.533 seconds to synthesize the following function
as a solution to the problem for the bound ||| € [0.1,1.0], ¢ € [0.1,1.0], and
¢; € [45,98] using 6 = 0.05:

V = 54.6950z1 22 + 90.2849x% + 50.5376x3.

6 Conclusion

We have described delta-decision procedures for solving exists-forall formulas
in the first-order theory over the reals with computable real functions. These
formulas can encode a wide range of hard practical problems such as general
constrained optimization and nonlinear control synthesis. We use a branch-and-
prune framework, and design special pruning operators for universally-quantified
constraints such that the procedures can be proved to be delta-complete, where
suitable control of numerical errors is crucial. We demonstrated the effective-
ness of the procedures on various global optimization and Lyapunov function
synthesis problems.
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