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ABSTRACT
Recent clinical studies suggest that the efficacy of hormone
therapy for prostate cancer depends on the characteristics
of individual patients. In this paper, we develop a compu-
tational framework for identifying patient-specific androgen
ablation therapy schedules for postponing the potential can-
cer relapse. We model the population dynamics of heteroge-
neous prostate cancer cells in response to androgen suppres-
sion as a nonlinear hybrid automaton. We estimate person-
alized kinetic parameters to characterize patients and em-
ploy δ-reachability analysis to predict patient-specific ther-
apeutic strategies. The results show that our methods are
promising and may lead to a prognostic tool for personalized
cancer therapy.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Model checking ; J.3 [Life and Medical Sciences]:
Biology and genetics

General Terms
Theory, Verification

Keywords
hybrid systems, delta-reachability, systems biology, prostate
cancer, personalized therapy

1. INTRODUCTION
Prostate cancer is the second leading cause of cancer-related
deaths among men in United States [24]. Hormone ther-
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apy in the form of androgen deprivation has been a corner-
stone of the management of advanced prostate cancer for
several decades. However, controversy remains regarding
its optimal application [5]. Continuous androgen suppres-
sion (CAS) therapy has many side effects including anemia,
osteoporosis, impotence, etc. Further, most patients expe-
rience a relapse after a median duration of 18-24 months of
CAS treatment, due to the proliferation of castration resis-
tant cancer cells (CRCs).

In order to reduce side effects of CAS and to delay the
time to relapse, intermittent androgen suppression (IAS)
was proposed to limit the duration of androgen-poor con-
ditions and avoid emergence of CRCs [2]. In particular, IAS
therapy switches between on-treatment and off-treatment
modes by monitoring the serum level of a tumor marker
called prostate-specific antigen (PSA):

– When the PSA level decreases and reaches a lower thresh-
old value r0, androgen suppression is suspended.

– When the PSA level increases and reaches a upper thresh-
old value r1, androgen suppression is resumed by the admin-
istration of medical agents.

Recent clinical phase II and III trials confirmed that IAS has
significant advantages in terms of quality of life and cost [3,
4]. However, with respect to time to relapse and cancer-
specific survival, the clinical trials suggested that to what
extent IAS is superior to CAS depends on the individual pa-
tient and the on- and off-treatment scheme [3, 4, 10]. Thus,
a crucial unsolved problem is how to design a personalized
treatment scheme for each individual to achieve maximum
therapeutic efficacy.

To answer this question, mathematical models have been
developed to study the dynamics of prostate cancer under
androgen suppression [16, 15, 14, 12, 17, 23]. Recently,
attempts have been made to computationally classify pa-
tients and obtain the optimal treatment scheme [13, 25].
However, these results relied on simplifying nonlinear hy-
brid dynamical systems to more manageable versions such
as piecewise linear models [13] and piecewise affine systems
[25], which compromises the validity of the models. In this



paper, we construct a nonlinear hybrid model to describe
the prostate cancer progression dynamics under IAS there-
apy. Our model extends the models previously proposed in
[16, 15, 14]. We use δ-reachability analysis to obtain the
following results:

– First, we show that our model is in good agreement with
the published clinical data in literature [3, 4]. It can depict
the dynamical changes of proliferation rates induced by per-
turbing androgen levels that are difficult for previous models
(e.g. [14]) to capture. It also addresses the variability in in-
dividual patients and is able to accurately reproduce the
datasets of different patients.

– Second, we obtain interesting insights on CRC prolifera-
tion dynamics through analysis of the nonlinear model. Our
results support the hypothesis that the physiological level of
androgen reduce CRCs [14], while rule out other hypotheses,
for instance, CRCs proliferate at a constant rate [23].

– Third, we propose a computational framework for identi-
fying patient-specific IAS schedules for postponing the po-
tential cancer relapse. Specifically, we obtain personalized
model parameters by fitting to the clinical data in order
to characterize individual patients. We then use δ-decision
produces and bounded model checking to predict therapeu-
tic strategies.

Through this case study, we aim to highlight the opportunity
for solving realistic biomedical problems using formal meth-
ods. In particular, methods based on δ-reachability analysis
suggest a very promising direction to proceed.

The rest of the paper is organized as follows. We describe our
model in Section 2 and present preliminaries on δ-reachability
analysis in Section 3. In Section 4, we present the biological
insights we gained through this case study, as well as the
model-predicted treatment schemes for individual patients.
In the final section, we summarize the paper and discuss
future work.

2. A HYBRID MODEL OF PROSTATE CAN-
CER PROGRESSION

In this section, we propose a hybrid automata based model
in order to reproduce the clinical observations [3, 4] of prostate
cancer cell dynamics in response to the IAS therapy. It is
known that the proliferation and survival of prostate cancer
cells depend on the levels of androgens, specifically testos-
terone and 5α-dihydrotestosterone (DHT). Here we consider
two distinct subpopulations of prostate cancer cells: hor-
mone sensitive cells (HSCs) and castration resistant cells
(CRCs). Androgen deprivation can lead to remarkable de-
creases of the proliferation and survival rates of HSCs, but
also up-regulates the conversion from HSCs to CRCs, which
will keep proliferating under low androgen level. Figure 1 il-
lustrates this cancer progression process and the correspond-
ing hybrid automata model is shown in Figure 2.

Our model is based on previous models developed by [16,
15, 14]. It takes into account the population of HSCs, the
population of CRCs, as well as the serum androgen concen-
tration, represented as x(t), y(t), and z(t), respectively. In
addition, it also includes the serum prostate-specific antigen
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Hormone sensitive cancer cells (HSCs)!

Castration resistant cancer cells (CRCs)!

Figure 1: Prostate cancer progression in response to
(a) CAS and (b) IAS treatments.

(PSA) level v(t), which is a commonly used biomarker for
assessing the total population of prostate cancer cells. The
model has two modes: on-treatment mode and off-treatment
mode. Following [14], in the off-treatment mode (mode 2),
the androgen concentration is maintained at the normal level
z0 by homeostasis. In the on-treatment (mode 1), the an-
drogen is cleared at a rate 1

τ
. Further, we also introduce a

basal androgen production rate µz, in order to reproduce the
measured basal testosterone levels in response to androgen
suppression [3, 4].

The net growth rate of x(t) equals to (prolifx − apopx −
convx) · x(t), where prolifx, apopx and convx denote the
proliferation, apoptosis and conversion rates, respectively.
In previous studies such as [16, 15, 14], the prolifx and apopx
were modeled using Michaelis-Menten-like (MML) functions,

in the form of Vmax + (1− Vmax) z(t)
z(t)+Km

, where Vmax and

Km are kinetic parameters. This approach will result in an-
drogen response curves as shown in Figure 3(a). In particu-
lar, when one decreases the androgen level starting from the
normal level, prolifx (or apopx) begins to decrease (or in-
crease) first slowly and then fast until a sufficiently low level
of androgen is reached. However, this is inconsistent with
the clinical observations presented in [3, 4]. The data show
that for most of the patients, androgen suppression around
normal level will induce an immediate decrease of the PSA
level, which implies an fast decrease (or increase) of prolifx
(or apopx). Therefore, instead of the MML functions, we
adopt sigmoid functions, in the form of 1

1+exp(−(z(t)−k1)·k2)
,

to model prolifx and apopx. The corresponding androgen
response curves are shown in Figure 3(b). Following [14],
we model the conversion rate, proliferation rate and the

apoptosis rate of y(t) as m1(1 − z(t)
z0

), αy(1 − d z(t)
z0

) and

βy, respectively. The PSA level v (ng ml−1) is defined as
v(t) = c1 · x(t) + c2 · y(t).

The transitions between two modes depends on the values
of v, dv/dt and an auxiliary variable w, which measures
the time taken in a mode. Specifically, for each patient we
starts with mode 1 to apply the treatment. When the PSA
level drops to certain threshold r0 or w hits time out thresh-
old tmax, the treatment will be suspended. When the PSA
level is back to threshold r1, the treatment will be resumed.
Note that w is associated with a dummy differential equa-
tion dw

dt
= 1 (not shown in Figure 2). Its value will be reset

to 0 when the jump takes place.
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Figure 2: A hybrid automaton model for prostate
cancer hormone therapy.

We obtained the parameter values by fitting to patient PSA
data reported in [3, 4]. Note that the patient-to-patient vari-
ability in terms of parameter values is significant. For exam-
ple, Figure 4 shows that the proliferation rate of Patent#22
is much lower than the Patent#1. The descriptions and a
set of typical values (i.e. estimated from Patient#1 data) of
model parameters are listed in Table 1.

3. DELTA-REACHABILITY ANALYSIS
Hybrid automata are difficult to analyze. It has been shown
that even simple reachability questions for hybrid systems
with linear differential dynamics are undecidable [11]. There-
fore, in order to analyze our hybrid model of prostate cancer
progression, we employed a δ-reachability based framework
[21] which can sidesteps undecidability and allows the pa-
rameter synthesis problem to be relaxed in a sound manner
and solved algorithmically.

3.1 Delta-Decisions
The framework of δ-complete decision procedures [6] aims
to solve first-order logic formula with arbitrary computable
real functions, such as elementary functions and solutions
of Lipschitz-continuous ODEs [7]. The answers returned
by such procedures are either unsat or δ-sat. Here, unsat
means the corresponding formula is verifiably false, while δ-
sat means a δ-weakening version of the formula is true. In
other words, δ-decision procedures overcome undecidability
issues by returning answers with one-sided δ-bounded errors.
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Figure 3: Androgen response curves of (a) Ideta’s
model and (b) our model.
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Figure 4: The clinical data for PSA time serials.

Note that δ is an arbitrarily small positive rational chosen
by the user. The algorithms for solving δ-decision problems
were described in our previous work [7, 9] and were imple-
mented in the dReal toolset [8].

3.2 Parameter identification
Further, we have also proposed an encoding scheme which
aimed to answer bounded reachability problems of hybrid
automata with nontrivial invariants [21]. This encoding en-
abled us to tackle the parameter identification problem by
answering a k-step reachability question: “Is there a pa-
rameter combination for which the model reaches the goal
region in k steps?” Essentially, we describe the set of states
of interest (goal region) as a first-order logic formula and
perform bounded model checking [1] to determine reacha-
bility of these states. We then adapt an interval constrains
propagation based algorithm to explore the parameter space
and identify the sets of resulting parameters. If none exists,
then the model is unfeasible. Otherwise, a witness (i.e., a
value for each parameter) is returned. We have developed
the dReach tool (http://dreal.cs.cmu.edu/dreach.html)
that automatically builds reachability formulas from a hy-
brid model and a goal description. Such formulas are then
solved by the δ-complete solver dReal [8].

For the interested readers, we refer to Appendix and [21] for
more details on δ-decisions and δ-reachability analysis based
parameter identification.

4. RESULTS
We have implemented our prostate cancer progression model
in the dReach’s modeling language. The model files are
available at http://www.cs.cmu.edu/~liubing/hscc15/. All
the experiments reported below were done using a machine
with two Intel Xeon E5-2650 2.00GHz processors and 32GB
RAM. The precision δ was set to 10−3.



Table 1: Prostate cancer model parameter values
Parameter Value Remark

αx 0.0204 d−1 HSC proliferation
αy 0.0242 d−1 CRC proliferation
βx 0.0201 d−1 HSC apoptosis
βy 0.0168 d−1 CRC apoptosis
k1 10.0 nM HSC proliferation
k2 1.0 HSC proliferation
k3 10.0 nM HSC apoptosis
k4 2 HSC apoptosis
m1 0.00005 d−1 HSC to CRC conversion
z0 12.0 nM normal androgen level
τ 12.5 d androgen degradation
λx 0.01 d−1 HSC basal degradation
µx 0.05 d−1 HSC basal production
µz 0.02 d−1 Androgen basal production

4.1 CRC proliferation dynamics
Due to the lack of biomarkers distinguishing HSCs and CRCs
in vivo, the proliferation kinetics of CRCs in response to an-
drogen is far from known. Three hypotheses, denoted as H1,
H2 and H3 have been proposed to describe the androgen-
dependent CRC growth [14], which are discriminated by the
value of d in the model, i.e.:

• H1 : d = 0, the grow of CRCs is independent of z(t);

• H2 : d = 1− βy
αy

, CRCs cease growing when z(t) = z0;

• H3 : d = 1, CRCs decrease when z(t) = z0.

The Patient#1 data presented in Figure 4 shows that with
proper treatment schedules, it is possible to avoid his cancer
relapse in years. We now show that only H3 agrees with this
observation. As the PSA level v(t) reflects the total number
of cancer cells and CRCs are responsible for recurrent cancer,
we use two invariants: 0 ≤ v(t) ≤ 30 and 0 ≤ y(t) ≤ 1 to
specify the property of “no cancer relapse”. We then carried
out δ-reachability analysis to verify whether the invariants
hold for each of the model candidates within a bounded
time of 365 days. Here the treatment schedule threshold
parameters were provided as ranges: r0 ∈ [0, 7.99] (ng ml−1)
and r1 ∈ [8, 15] (ng ml−1).

The unsat answers were returned for H1 and H2 (Run#1 and
Run#2, Table 2), indicating that they will always lead to
cancer relapse no matter which treatment schedule was cho-
sen. In contrast, δ-sat was returned for H3 (Run#3, Table
2). Witness trajectories are shown in Figure 5), demonstrat-
ing that the cancer relapse can be avoided in a bound time
as observed experimentally [3, 4]. The rest of the results in
this paper were generated using H3.

4.2 Androgen-dependent HSC dynamics
As mentioned in Section 2, previous studies [16, 15, 14] mod-
eled the androgen-dependent proliferation and apoptosis of
HSCs using MML functions, while we use sigmoid functions.
Here we show that the MML based approach is unable to
reproduce an important dynamical property, but our model
could. The patients’ data in [3, 4] show that the half-time
t1/2 (i.e. the amount of time required for a quantity to fall to
one half of its initial value) of PSA level under androgen sup-
pression is often less than 60 days. To specify this property,
we introduced an auxiliary mode (Mode 3). If v(t) = v(0)/2,
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Figure 5: The simulated witness trajectories of the
H3 model.

the system will jump from Mode 1 to Mode 3. Starting with
Mode 1 and 20 ≤ x(0) ≤ 30, we checked the reachability
of a goal state with 0 ≤ w ≤ 60 for both Ideta’s model [14]
and our model. The results show that δ-sat was returned for
our model (Run#4, Table 2), while unsat was returned for
Ideta’s model (Run#5, Table 2), suggesting the superiority
of sigmoid functions over MML functions in capturing HSC
dynamics.

Run Model Initial State Result Time

1 H1 r0 ∈ [0.0, 7.99], r1 ∈ [8.0, 15.0] unsat 3.94
2 H2 r0 ∈ [0.0, 7.99], r1 ∈ [8.0, 15.0] unsat 5.26
3 H3 r0 ∈ [0.0, 7.99], r1 ∈ [8.0, 15.0] δ-sat 472
4 H3 x(0) ∈ [20.0, 30.0] δ-sat 10.1
5 Ideta x(0) ∈ [20.0, 30.0] unsat 0.5
6 H3 r0 ∈ [0.0, 7.99], r1 ∈ [8.0, 15.0] δ-sat 526
7 H3 r0 ∈ [0.0, 7.99], r1 ∈ [8.0, 15.0] unsat 0.3
8 H3 r0 ∈ [0.0, 7.99], r1 ∈ [8.0, 15.0] δ-sat 28
9 H3 r0 ∈ [0.0, 7.99], r1 ∈ [8.0, 15.0] δ-sat 203

Table 2: Experimental results. Result = bounded model

checking result, Time = CPU time (s), δ = 10−3.

4.3 Personalized therapy design
We next apply δ-reachability analysis to design treatment
schemes for individual patients. The parameter values shown
in Table 1 were estimated by fitting the data of Patient#1.
Since the IAS response of Patient#1 is typical, we treated its
parameter values as the baseline values. As we demonstrated
in Figure 4, the values of some parameters vary among pa-
tients. Such variability may significantly affect the hormone
therapy responses. For example, Figure 6(a-c) illustrates
the PSA dynamics of 3 mock patients with different per-
sonalized parameters under the same IAS treatment scheme
(r0 = 4, r1 = 10). IAS prevents the relapse for Patient
A and delays the relapse for Patient B, but does not help
Patient C. Figure 6(d) shows that, by modifying the IAS
scheduling parameters r0 and r1, the relapse of Patient C
can be avoided or delayed.



Table 3: Estimated personalized parameters and suggested treatment schemes

Parameter Patient#1 Patent#11 Patient # 15 Patient#26

αx 0.0204 d−1 0.0204 d−1 0.0213 d−1 0.0197 d−1

αy 0.0242 d−1 0.0242 d−1 0.0242 d−1 0.0242 d−1

βx 0.0201 d−1 0.02 d−1 0.01 d−1 0.0175 d−1

βy 0.0168 d−1 0.0158 d−1 0.0168 d−1 0.0168 d−1

k1 10.0 nM 7.0 nM 7.0 nM 10.0 nM
k2 1.0 1.0 1.0 1.0
k3 10.0 nM 7.0 nM 7.4 nM 10.0 nM
k4 2 2 2 2
m1 0.00005 d−1 0.00005 d−1 0.00005 d−1 0.00005 d−1

z0 12.0 nM 9.0 nM 8.0 nM 12.0 nM
τ 12.5 d 12.5 d 12.5 d 12.5 d
λx 0.01 d−1 0.0121 d−1 0.01 d−1 0.01 d−1

µx 0.05 d−1 0.06 d−1 0.02 d−1 0.03 d−1

µz 0.02 d−1 0.02 d−1 0.02 d−1 0.02 d−1

Scheme r0 = 5.2, r1 = 10.8 N.A r0 = 1.9, r1 = 8.0 r0 = 4.6, r1 = 10.7
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Figure 6: Simulated PSA profiles of patients with
different parameters. (a) Patient A: αy = 0.0242,
βy = 0.0168, m1 = 0.00005, z(0) = 12, r0 = 4, r1 = 10
(b) Patient B: αy = 0.0328, βy = 0.013, z(0) = 13,
m1 = 0.0001, r0 = 4, r1 = 10 (c) Patient C: αy = 0.0426,
βy = 0.189, m1 = 0.00005, z(0) = 15, r0 = 4, r1 = 10
(d) Patient C: αy = 0.0426, βy = 0.189, m1 = 0.00005,
z(0) = 15, r0 = 4, r1 = 10.6.

Given the parameter values of an particular patient, we can
design a treatment scheme, which might help him avoid can-
cer relapse with bounded time by solving the following pa-
rameter identification problem: (i) set the ranges of schedul-
ing parameters as r0 ∈ [0, 7.99] (nM) and r1 ∈ [8, 15]; (ii)
check if H3 can reach the goal state without violating the
“no cancer relapse” invariants within 1 year. If unsat was
returned, it means that androgen suppression therapy is not
suitable for the patient. The patient has to resort to other
kinds of therapeutic interventions. Otherwise, when the δ-
sat answer is returned, a treatment scheme containing fea-
sible values of r0 and r1 will also be returned, which could
help preventing or delaying the relapse within bounded time.
Note that if r0 = 0 is returned, it implies that the CAS
scheme, instead of IAS scheme, might be more suitable for
the patient.

The personalized parameters of individual patients can be
obtained by collectively fitting the available experimental
data using global optimization method. We tested our method
on real patients data collected by [4]1. The parameter val-
ues for each randomly selected patient were estimated by
fitting the model to the PSA time serials data under the IAS
therapy using evolutionary strategy search. As an example,
Figure 7 shows the comparison between model predictions
and the experimental data of PSA and androgen levels for
Patient#1, Patient#11, Patient#15, and Patient#26. We
then predicted the treatment schemes for the future year us-
ing δ-reachability analysis (Run#6 for Patient#1, Run#7
for Patient#15, Run#8 for Patient#26 and Run#9 for Pa-
tient#11, Table 2). The results are summarized in Table 3.
Note that for Patient#11, unsat was returned, implying that
no suitable treatment schemes were identified. This might
be due to the raised population size of CRCs in the late
phase of clinical trails.
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Figure 7: Model prediction vs. experimental data.

1Data available at http://www.nicholasbruchovsky.com/
clinicalResearch.html.



5. CONCLUSION
We have proposed a hybrid model to study the prostate
cancer cell dynamics in response to hormone therapy. Us-
ing δ-reachability analysis, we obtained interesting biologi-
cal insights into the prostate cancer heterogeneity. We also
developed a δ-decisions based computational framework for
predicting patient-specific treatment schedules. We have
demonstrated the applicability of our method with the help
of real clinical datasets. Our study explored the possibil-
ities of using formal methods to tackle quantitative sys-
tems pharmacology problems. Our results also highlighted
δ-reachability analysis as a potent technique in this line of
research.

Experimental validation of our method might require years
of clinical studies, which is beyond the scope of this case
study. It is worth noting that our therapy design frame-
work is generic and can be applied to other settings, for
example, predicting the radiation dosing schedules for brain
cancer [18]. Furthermore, another interesting direction is to
extend our model and framework to take into account the
stochasticity in cellular environment. In this respect, the
probabilistic modeling and statistical analysis techniques in
[20, 22, 19] might offer helpful pointers.
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Appendix
LRF -Formulas and δ-Decidability
We will use a logical language over the real numbers that
allows arbitrary computable real functions. We write LRF to
represent this language. Intuitively, a real function is com-
putable if it can be numerically simulated up to an arbitrary
precision. For the purpose of this paper, it suffices to know
that almost all the functions that are needed in describing
hybrid systems are Type 2 computable, such as polynomials,
exponentiation, logarithm, trigonometric functions, and so-
lution functions of Lipschitz-continuous ordinary differential
equations.

More formally, LRF = 〈F , >〉 represents the first-order sig-
nature over the reals with the set F of computable real
functions, which contains all the functions mentioned above.
Note that constants are included as 0-ary functions. LRF -
formulas are evaluated in the standard way over the struc-
ture RF = 〈R,FR, >R〉. It is not hard to see that we can
put any LRF -formula in a normal form, such that its atomic
formulas are of the form t(x1, ..., xn) > 0 or t(x1, ..., xn) ≥ 0,
with t(x1, ..., xn) composed of functions in F . To avoid ex-
tra preprocessing of formulas, we can explicitly define LF -
formulas as follows.

Definition 1 LRF -Formulas Let F be a collection of
computable real functions. We define:

t := x | f(t(~x)), where f ∈ F (constants are 0-ary functions);

ϕ := t(~x) > 0 | t(~x) ≥ 0 | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃xiϕ | ∀xiϕ.

In this setting ¬ϕ is regarded as an inductively defined op-
eration which replaces atomic formulas t > 0 with −t ≥ 0,
atomic formulas t ≥ 0 with −t > 0, switches ∧ and ∨, and
switches ∀ and ∃.

Definition 2 Bounded LRF -Sentences We define the

bounded quantifiers ∃[u,v] and ∀[u,v] as ∃[u,v]x.ϕ =df ∃x.(u ≤
x ∧ x ≤ v ∧ ϕ) and ∀[u,v]x.ϕ =df ∀x.((u ≤ x ∧ x ≤ v) →
ϕ) where u and v denote LRF terms, whose variables only
contain free variables in ϕ excluding x. A bounded LRF -
sentence is

Q
[u1,v1]
1 x1 · · ·Q[un,vn]

n xn ψ(x1, ..., xn),

where Q
[ui,vi]
i are bounded quantifiers, and ψ(x1, ..., xn) is

quantifier-free.

Definition 3 δ-Variants Let δ ∈ Q+ ∪ {0}, and ϕ an
LRF -formula

ϕ : QI11 x1 · · ·Q
In
n xn ψ[ti(~x, ~y) > 0; tj(~x, ~y) ≥ 0],

where i ∈ {1, ...k} and j ∈ {k + 1, ...,m}. The δ-weakening
ϕδ of ϕ is defined as the result of replacing each atom ti > 0
by ti > −δ and tj ≥ 0 by tj ≥ −δ:

ϕδ : QI11 x1 · · ·Q
In
n xn ψ[ti(~x, ~y) > −δ; tj(~x, ~y) ≥ −δ].

It is clear that ϕ → ϕδ (see [7]). In [6], we have proved

that the following δ-decision problem is decidable, which is
the basis of our framework.

Theorem 1 δ-Decidability [6] Let δ ∈ Q+ be arbitrary.
There is an algorithm which, given any bounded LRF -sentence
ϕ, correctly returns one of the following two answers:

• δ-True: ϕδ is true.

• False: ϕ is false.

When the two cases overlap, either answer is correct.

The following theorem states the (relative) complexity of the
δ-decision problem. A bounded Σn sentence is a bounded
LRF -sentence with n alternating quantifier blocks starting
with ∃.

Theorem 2 Complexity [7] Let S be a class of LRF -
sentences, such that for any ϕ in S, the terms in ϕ are in
Type 2 complexity class C. Then, for any δ ∈ Q+, the δ-
decision problem for bounded Σn-sentences in S is in (ΣP

n )C.

Basically, the theorem says that increasing the number of
quantifier alternations will in general increase the complex-
ity of the problem, unless P = NP (recall that ΣP

0 = P and
ΣP

1 = NP). This result can specialized for specific families
of functions. For example, with polynomially-computable
functions, the δ-decision problem for bounded Σn-sentences
is (ΣP

n )-complete. For more details and results we again
point the interested reader to [7].

Delta-Decisions for Hybrid Models
Now we state the encoding for hybrid models. Recall that
hybrid automata generalize finite-state automata by per-
mitting continuous-time evolution (or flow) in each discrete
state (or mode). Also, in each mode an invariant must be
satisfied by the flow, and mode switches are controlled by
jump conditions.

Definition 4 LRF -Representations of Hybrid Automata
A hybrid automaton in LRF -representation is a tuple

H = 〈X,Q, {flowq(~x, ~y, t) : q ∈ Q}, {invq(~x) : q ∈ Q},
{jumpq→q′(~x, ~y) : q, q′ ∈ Q}, {initq(~x) : q ∈ Q}〉

where X ⊆ Rn for some n ∈ N, Q = {q1, ..., qm} is a finite
set of modes, and the other components are finite sets of
quantifier-free LRF -formulas.

We now show the encoding of bounded reachability, which
is used for encoding the parameter synthesis problem. We
want to decide whether a given hybrid system reaches a par-
ticular region of its state space after following a (bounded)
number of discrete transitions, i.e., jumps. First, we need to
define auxiliary formulas used for ensuring that a particular
mode is picked at a certain step.

Definition 5 Let Q = {q1, ..., qm} be a set of modes. For
any q ∈ Q, and i ∈ N, use biq to represent a Boolean variable.
We now define

enforceQ(q, i) = biq ∧
∧

p∈Q\{q}

¬bip



enforceQ(q, q′, i) = biq ∧¬bi+1
q′ ∧

∧
p∈Q\{q}

¬bip ∧
∧

p′∈Q\{q′}

¬bi+1
p′

We omit the subscript Q when the context is clear.

We can now define the following formula that checks whether
a goal region of the automaton state space is reachable after
exactly k discrete transitions. We first state the simpler case
of a hybrid system without invariants.

Definition 6 k-Step Reachability, Invariant-Free Case
Suppose H is an invariant-free hybrid automaton, U a sub-
set of its state space represented by goal, and M > 0. The
formula ReachH,U (k,M) is defined as:

∃X~x0∃X~xt0 · · · ∃X~xk∃X~xtk∃[0,M ]t0 · · · ∃[0,M ]tk.∨
q∈Q

(
initq(~x0) ∧ flowq(~x0, ~x

t
0, t0) ∧ enforce(q, 0)

)

∧
k−1∧
i=0

( ∨
q,q′∈Q

(
jumpq→q′(~x

t
i, ~xi+1) ∧ enforce(q, q′, i)

∧flowq′(~xi+1, ~x
t
i+1, ti+1) ∧ enforce(q′, i+ 1)

))
∧

∨
q∈Q

(goalq(~x
t
k) ∧ enforce(q, k))

where ∃Xx is a shorthand for ∃x ∈ X. Intuitively, the tra-

jectories start with some initial state satisfying initq(~x0) for
some q. Then, in each step the trajectory follows flowq(~xi, ~x

t
i, t)

and makes a continuous flow from ~xi to ~xti after time t.
When the automaton makes a jump from mode q′ to q, it
resets variables following jumpq′→q(~x

t
k, ~xk+1). The auxiliary

enforce formulas ensure that picking jumpq→q′ in the i-the

step enforces picking flow′q in the (i+ 1)-th step.

When the invariants are not trivial, we need to ensure that
for all the time points along a continuous flow, the invariant
condition holds. We need to universally quantify over time,
and the encoding is as follows:

Definition 7 k-Step Reachability, Nontrivial Invari-
ant Suppose H contains invariants, and U is a subset
of the state space represented by goal. The LRF -formula
ReachH,U (k,M) is defined as:

∃X~x0∃X~xt0 · · · ∃X~xk∃X~xtk∃[0,M ]t0 · · · ∃[0,M ]tk.∨
q∈Q

(
initq(~x0) ∧ flowq(~x0, ~x

t
0, t0) ∧ enforce(q, 0)

∧∀[0,t0]t∀X~x (flowq(~x0, ~x, t)→ invq(~x))
)

∧
k−1∧
i=0

( ∨
q,q′∈Q

(
jumpq→q′(~x

t
i, ~xi+1) ∧ flowq′(~xi+1, ~x

t
i+1, ti+1)

∧enforce(q, q′, i) ∧ enforce(q′, i+ 1)

∧∀[0,ti+1]t∀X~x (flowq′(~xi+1, ~x, t)→ invq′(~x)))
))

∧
∨
q∈Q

(goalq(~x
t
k) ∧ enforce(q, k)).

The extra universal quantifier for each continuous flow ex-
presses the requirement that for all the time points between
the initial and ending time point (t ∈ [0, ti + 1]) in a flow,
the continuous variables ~x must take values that satisfy the
invariant conditions invq(~x).


