
Satisfiability Modulo ODEs

Sicun Gao
Computer Science Department

Carnegie Mellon University
Pittsburgh, USA

Email: sicung@cs.cmu.edu

Soonho Kong
Computer Science Department

Carnegie Mellon University
Pittsburgh, USA

Email: soonhok@cs.cmu.edu

Edmund M. Clarke
Computer Science Department

Carnegie Mellon University
Pittsburgh, USA

Email: emc@cs.cmu.edu

Abstract—We study SMT problems over the reals containing
ordinary differential equations,. They are important for formal
verification of realistic hybrid systems and embedded software.
We develop �-complete algorithms for SMT formulas that are
purely existentially quantified, as well as 98-formulas whose
universal quantification is restricted to the time variables. We
demonstrate scalability of the algorithms, as implemented in
our open-source solver dReal, on SMT benchmarks with several
hundred nonlinear ODEs and variables.

I. INTRODUCTION

Hybrid systems tightly combine finite automata and con-
tinuous dynamics. In most cases, the continuous components
are specified by ordinary differential equations (ODEs). Thus,
formal verification of general hybrid systems requires reason-
ing about logic formulas over the reals that contain ODE con-
straints. This problem is considered very difficult and has not
been investigated in the context of decision procedures until
recently [7], [8], [16]. It is believed that current techniques
are not powerful enough to handle formulas that arise from
formal verification of realistic hybrid systems, which typically
contain many nonlinear ODEs and other constraints.

Since the first-order theory over the reals with trigono-
metric functions is already undecidable, solving formulas with
general ODEs seems inherently impossible. We have resolved
much of this theoretical difficulty by proposing the study of
�-complete decision procedures for such formulas [10]. An
algorithm is �-complete for a set of SMT formulas, where �
is an arbitrary positive rational number, if it correctly decides
whether a formula is unsatisfiable or �-satisfiable. Here, a for-
mula is �-satisfiable if, under some �-perturbations, a syntactic
variant of the original formula is satisfiable [9]. We have shown
that �-complete decision procedures are suitable for various
formal verification tasks [9], [10]. We have also proved that
�-complete decision procedures exist for SMT problems over
the reals with Lipschitz-continuous ODEs. Such results serve
as a theoretical foundation for developing practical decision
procedures for the SMT problem.

In this paper we study practical �-complete algorithms for
SMT formulas over the reals with ODEs. We show that such
algorithms can be made powerful enough to scale to realistic
benchmark formulas with several hundred nonlinear ODEs.

We develop decision procedures for the problem following
a standard DPLL(ICP) framework, which relies on constraint
solving algorithms as studied in Interval Constraint Propa-
gation (ICP) [2]. In this framework, for any ODE system
we can consider its solution function ~x

t

= ~f(t, ~x0) as a

constraint between the initial variables ~x0, time variable t, and
the final state variables ~x

t

. We define pruning operators that
take interval assignments on ~x0, t, and ~x

t

as inputs, and output
refined interval assignments on these variables. We formally
prove that the proposed algorithms are �-complete. Beyond
standard SMT problems where all variables are existentially
quantified, we also study 98-formulas under the restriction that
the universal quantifications are limited to the time variables
(we call them 98t-formulas). Such formulas have been an
obstacle in SMT-based verification of hybrid systems [4], [5].

In brief, this paper makes the following contributions:

• We formalize the SMT problem over the reals with general
Lipschitz-contiunous ODEs, and illustrate its expressiveness by
encoding various standard problems concerning ODEs: initial
and boundary value problems, parameter synthesis problems,
differential algebraic equations, and bounded model checking
of hybrid systems. In some cases, 98t-formulas are needed.

• We propose algorithms for solving SMT with ODEs, using
ODE constraints to design pruning operators in a branch-and-
prune framework. We handle both standard SMT problems
with only existentially quantified variables, as well as 98t-
formulas. We prove that the algorithms are �-complete.

• We demonstrate the scalability of the algorithms, as im-
plemented in our open-source solver dReal [11], on realistic
benchmarks encoding formal verification problems for several
nonlinear hybrid systems.

Related Work. Solving real constraints with ODEs has a
wide range of applications, and much previous work exists
for classes with special structures in different paradigms [6],
[13], [18]. Recently [12] proposed a more general constraint
solving framework, focusing on the formulation of the problem
in the standard CP framework. On the SMT solving side,
several authors have considered logical combinations of ODE
constraints and proposed partial decision procedures [7], [8],
[16]. We aim to extend and formalize existing algorithms for a
general SMT theory with ODES, and formally prove that they
can be made �-complete. In terms of practical performance, the
proposed algorithms are made scalable to various benchmarks
that contain hundreds of nonlinear ODEs and variables.

The paper is organized as follows. In Section II, we define
the SMT problem with ODEs and show how it can encode
various standard problems with ODEs. In Section III, we
propose algorithms in the DPLL(ICP) framework for solving
fully existentially quantified formulas as well as 98t formulas.
In Section IV we show experimental results.

ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc. 88105ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc.

II. SMT OVER THE REALS WITH ODES

A. A First-Order Signature with Computable Real Functions

As studied in Computable Analysis [19], [17], we can
encode real numbers as infinite strings, and develop a com-
putability theory of real functions using Turing machines that
perform operations using oracles encoding real numbers. We
briefly review definitions and results of importance to us.
Throughout the paper we use || · || to denote the max norm
|| · ||1 over Rn for various n. First, a name of a real number
is a sequence of rational numbers converging to it:

Definition 1 (Names). A name of a 2 R is any function �
a

:
N ! Q that satisfies: for any i 2 N, |�

a

(i) � a| < 2�i. For
~a 2 Rn, �

~a

(i) = h�
a1(i), ..., �a

n

(i)i. We write the set of all
possible names for ~a as �(~a).

Next, a real function f is computable if there is a Turing
machine that can use any argument x of f as an oracle, and
compute the value of f(x) up to an arbitrary precision 2�i,
where i 2 N. Formally:

Definition 2 (Computable Functions). We say f :✓ Rn ! R is
computable if there exists an oracle Turing machine M

f

such
that for any ~x 2 dom(f), any name �

~x

of ~x, and any i 2 N,
the machine uses �

~x

as an oracle and i as an input to compute
a rational number M�

~x

f

(i) satisfying |M�

~x

f

(i)� f(~x)| < 2�i.

The definition requires that for any ~x 2 dom(f), with
access to an arbitrary oracle encoding the name �

~x

of ~x,
M

f

outputs a 2�i-approximation of f(~x). In other words, the
sequence M�

~x

f

(1), M�

~x

f

(2), ... is a name of f(~x). Intuitively,
f is computable if an arbitrarily good approximation of f(~x)
can be obtained using any good enough approximation to
any ~x 2 dom(f). Most common continuous real functions
are computable [19]. Addition, multiplication, absolute value,
min, max, exp, sin. Compositions of computable functions
are computable. In particular, solution functions of Lipschitz-
continuous ordinary differential equations are computable, as
we explain next.

B. Solution Functions of ODEs

We now show that the framework of computable functions
allows us to consider solution functions of ODE systems.

Notation 3. We use ~x = ~y between n-dimensional vectors to
denote the system of equations x

i

= y
i

for 1 i n.

Let D ✓ Rn be compact and g
i

: D ! R be n Lipschitz-
continuous functions, which means that for some constant c

i

2
R+ (1 i n), for all ~x1, ~x2 2 D,

|g
i

(~x1)� g
i

(~x2)| c
i

||~x1 � ~x2||.

Let t be a variable over R. We consider the first-order
autonomous ODE system

d~y

dt
= ~g(~y(t, ~x0)) and ~y(0, ~x0) = ~x0 (1)

where ~x0 2 D. Here, each

y
i

: R⇥D ! R (2)

is called the i-th solution function of the ODE system (1).
A key result in computable analysis is that these solution
functions are computable, in the sense of Definition 2:

Proposition 4 ([17]). The solution functions ~y in the form of
(2) of the ODE system (1) are computable over R⇥D.

To see why this is true, recall that for any t 2 R and
~x0 2 D, the value of the solution function follows the Picard-
Lindelöf form:

~y(t, ~x0) =

Z
t

0
~g(~y(s, ~x0))ds + ~x0.

Approximations of the right-hand side of the equation can
be computed by finite sums, theoretically up to an arbitrary
precision.

C. SMT Problems and �-Complete Decision Procedures

We now let F denote an arbitrary collection of computable
real functions, which can naturally contain solution functions
of ODE systems in the form of (2). Let LF denote the first-
order signature hF , <i, where constants are seen as 0-ary
functions in F . Let RF be the structure hR,FR, <Ri that
interprets LRF -formulas in the standard way. We focus on
formulas whose variables take values from bounded domains,
which can be defined using bounded quantifiers:

Definition 5 (Bounded Quantifiers). The bounded quantifiers
9[u,v] and 8[u,v] are defined as

9[u,v]x.' =
df

9x.(u x ^ x v ^ '),
8[u,v]x.' =

df

8x.((u x ^ x v)! '),

where u and v denote LRF terms, whose variables only contain
free variables in ' excluding x. It is easy to check that
9[u,v]x.'$ ¬8[u,v]x.¬'.

The key definition in our framework is �-variants of first-
order formulas:

Definition 6 (�-Variants). Let � 2 Q+[{0}, and ' a bounded
LRF -sentence of the standard form

' : QI1
1 x1 · · ·QI

n

n

x
n

 [t
i

(~x) > 0; t
j

(~x) � 0],

where i 2 {1, ...k} and j 2 {k+1, ..., m}. Note that negations
are represented by sign changes on the terms. The �-weakening
'� of ' is defined as the result of replacing each atom t

i

> 0
by t

i

> �� and t
j

� 0 by t
j

� ��. That is,

'�� : QI1
1 x1 · · ·QI

n

n

x
n

 [t
i

(~x) > ��; t
j

(~x) � ��].

The SMT problem is standardly defined as deciding satisfi-
ability of quantifier-free formulas, which is equivalent to decid-
ing the truth value of fully existentially quantified sentences.
We will also consider formulas that are partially universally
quantified. Thus, we consider both ⌃1 and ⌃2 formulas here.

Definition 7 (Bounded ⌃1- and ⌃2-SMT Problems). A ⌃1-
SMT problem is a formula of the form

9I1x1 · · · 9I

nx
n

.'(~x)

and a ⌃2-SMT problem is of the form

9I1x1 · · · 9I

nx
n

8I

n+1x
n+1 · · · 8I

mx
m

.'(~x).

89106

In both cases '(~x) is a quantifier-free LRF -formula.

Definition 8 (�-Completeness [9]). Let S be a set of LRF
formulas, and � 2 Q+. We say a decision procedure A is �-
complete for S, if for any ' 2 S, A correctly returns one of
the following answers

• ' is false;

• '�� is true.

If the two cases overlap, either one is correct.

We have proved in [10] that �-complete decision proce-
dures exists for arbitrary bounded LRF -sentences. In particular,
there exists �-complete decision procedures for the bounded
⌃1 and ⌃2 SMT problems. This serves as the theoretical foun-
dation as well as a correctness requirement for the practical
algorithms that we will develop in the following sections.

D. SMT Encoding of Standard Problems with ODEs

In this section, we list several standard problems related
to ODE systems and show that they can be easily encoded
and generalized through SMT formulas. They motivate the
development of decision procedures for the theory.

Remark 9. In all the following cases, solutions to the standard
problems are obtained from witnesses for the existentially
quantified variables in the SMT formulas.

Remark 10. In the definitions below, when the solution
functions ~y of ODE systems are written as part of a formula,
no analytic forms are needed. They are functions included in
the signature LRF .

Generalized Initial Value Problems. Given an ODE system,
the standard initial value problem asks for a solution of the
variables at certain time, given a complete assignment to the
initial conditions of the system. In the form of SMT formulas,
we easily allow the initial conditions to be constrained by
arbitrary quantifier-free LRF -formulas:

Definition 11 (Generalized IVP). Let X ✓ Rn be a compact
domain, T 2 R+, and ~y : [0, T]⇥X ! X be the computable
solution functions of an ODE system. Let t 2 [0, T] be an
arbitrary constant that represents a time point of interest. The
generalized IVP problem is defined by formulas of the form:

9Xx09X~x. '(~x0) ^ ~x = ~y(t, ~x0),

where ' is a quantifier-free LRF -formula constraining the
initial states ~x0, and ~x is the needed value for time point t.

Generalized Boundary Value Problems. Given an ODE
system, the standard boundary value problem is concerned with
computing the computable solution function when part of the
variables are assigned values at the beginning of flow, and part
of the variables as assigned values at the end of the flow. A
generalized version as encoded by SMT formulas is:

Definition 12 (Generalized BVP). Let X ✓ Rn be a compact
domain, T 2 R+, and ~y : [0, T] ⇥ X ! X be the solution
functions of an ODE system. Let t, t0 2 [0, T] be two time
points of interest. The generalized BVP problem is:

9Xx09X~x
t

9X~x.'(~x0, ~xt

, t)^~x
t

= ~y(t, ~x0)^~x = ~y(t0, ~x0)

where ' is a quantifier-free LRF -formula that specifies the
boundary conditions. Note that ~x is the value that we are
interested in solving in the chosen time point t0.

Data-Fitting and Parameter Synthesis. The data fitting
problem is the following. Suppose an ODE system has part
of its parameters unspecified. Given a sequence of data
(t1,~a1), ..., (tk,~a

k

), we need to find the values of the missing
parameters of the original ODE system. More formally:

Definition 13 (Data-Fitting Problems). Let X ✓ Rn and P ✓
Rm be compact domains, T 2 R+, and ~y(~p) : [0, T]⇥X ! X
be the solution functions of an ODE system, where ~p 2 P be
a vector of parameters. Let (t1,~a1), ..., (tk,~a

k

) be a sequence
of pairs in [0, T]⇥X . The data-fitting problem is defined by:

9P ~p9Xx0. '(~x0)^~a1 = ~y(~p, t1, ~x0)^ · · ·^~ak

= ~y(~p, t
k

, ~x0),

where a quantifier-free ' constraints the initial states ~x0.

Differential Algebraic Equations. DAE problems combine
ODEs and algebraic constraints:

d~y

dt
= ~g(~y(t, ~y0), ~z) (3)

0 = ~h(~y, ~z, t) (4)

where ~y, ~y0 2 Rn, ~z 2 Rm. To express the problem in LRF ,
we need to use extra universal quantification to ensure that the
algebraic relations hold throughout the time duration. Again,
we can also generalize the equation in (4) to an arbitrary
quantifier-free LRF -formula. The problem is encoded as:

Definition 14 (DAE Problems). Let X ✓ Rn be a compact
domain, T 2 R+, and ~y : [0, T] ⇥ X ⇥ X ! X be
the computable solution functions of the ODE system in (3)
parameterized by ~z. Let h be defined by (4). Let t 2 [0, T]
be a time point of interest. A DAE problem is defined by the
following formula:

9X~x09X~x9Z~z8[0,t]t0.

'(~x0) ^ ~x = ~y(t, ~x0, ~z) ^ h(~y(~x0, t
0), ~z, t0) = 0

where a quantifier-free ' specifies the initial conditions for ~y,
and ~x is the needed value at time point t.

Bounded Model Checking of Hybrid Systems. Bounded
model checking problems for hybrid systems can be naturally
encoded as SMT formulas with ODEs [7], [8], [16], [4], [5].
We consider a simple hybrid system to show an example. Let
H be an n-dimensional 2-mode hybrid system. In mode 1,
the flow of the system follows an ODE system whose solution
function is ~y1(t, ~x0), and in mode 2, it follows another solution
function ~y2(t, ~x0). The jump condition from mode 1 to mode
2 is specified by jump(~x, ~x0). The invariants are specified by
inv

i

(~x) and for mode i. Let unsafe(~x) denote an unsafe region.
Let the continuous variables be bounded in X and time be
bounded in [0, T]. Now, if H starts from mode 1 with initial
states satisfying init(~x), it can reach the unsafe region after
one discrete jump from mode 1 to mode 2, iff the following
formula is true:

9X

~x19X

~x

t

1 9X

~x29X

~x

t

2 9[0,T]
t19[0,T]

t2 8[0,t1]
t

0
18[0,t2]

t

0
2.

init(~x1) ^ ~x

t

1 = ~y1(t1, ~x1) ^ inv1(~y1(t
0
1, ~x1)) ^ jump(~xt

1, ~x2)

^ ~x

t

2 = ~y2(t2, ~x2) ^ inv2(~y2(t
0
2, ~x2)) ^ unsafe(~xt

2).

90 107

The encoding can be explained as follows. For each mode, we
use two variable vectors ~x

i

and ~xt

i

to represent the continous
flows. ~x

i

denote the starting values of a flow, and ~xt

i

denotes
the final values. In mode 1, the flow starts with some values
in the initial states, specified by init(~x1). Then, we follow the
continuous dynamics in mode 1, so that ~xt

1 denotes the final
value ~xt

1 = ~y(t1, ~x1). Then the system follows the jumping
condition and resets the variables from ~xt

1 to ~x2 as specified
by jump(~xt

1, ~x2). After that, the system follows the flow in
mode 2. In the end, we check if the final state ~xt

2 in mode 2
satisfies the unsafe predicate, unsafe(~x2).

III. ALGORITHMS

A. The ICP framework

The method of Interval Constraint Propagation (ICP) [2]
finds solutions of real constraints using a “branch-and-prune”
method that performs constraint propagation of interval as-
signments on real variables. The intervals are represented
by floating-point end-points. Only over-approximations of the
function values are used, which are defined by interval exten-
sions of real functions.

Definition 15 (Floating-Point Intervals and Hulls). Let F
denote the finite set of all floating point numbers with symbols
�1 and +1 under the conventional order <. Let

IF = {[a, b] ✓ R : a, b 2 F, a b} and BF =
1[

n=1

IFn

denote the set of closed real intervals with floating-point end-
points, and the set of boxes with these intervals, respectively.
When S ✓ Rn is a set of real numbers, the hull of S is:

Hull(S) =
\

{B 2 BF : S ✓ B}.

Definition 16 (Interval Extension [2]). Suppose f :✓ Rn ! R
is a real function. An interval extension operator](·) maps f
to a function]f :✓ BF! IF, such that for any B 2 dom(]f),
it is always true that {f(~x) : ~x 2 B} ✓]f(B).

Algorithm 1 ICP(f1, ..., fm

, B0 = I0
1 ⇥ · · ·⇥ I0

n

, �)

1: S B0

2: while S 6= ; do
3: B S.pop()
4: while 91 i m, B 6=

�

Prune(B, f
i

) do
5: B Prune(B, f

i

)
6: end while
7: if B 6= ; then
8: if 91 i n, |]f

i

(B)| � � then
9: {B1, B2} Branch(B, i)

10: S.push({B1, B2})
11: else
12: return sat

13: end if
14: end if
15: end while
16: return unsat

ICP uses interval extensions of functions to “prune” out
sets of points that are not in the solution set, and “branch”

on intervals when such pruning can not be done, until a small
enough box that may contain a solution is found. A high-
level description of the decision version of ICP is given in
Algorithm 1. In Algorithm 1, Branch(B, i) is an operator that
returns two smaller boxes B0 = I1 ⇥ · · · ⇥ I 0

i

⇥ · · · ⇥ I
n

and
B00 = I1 ⇥ · · ·⇥ I 00

i

⇥ · · ·⇥ I
n

, where I
i

✓ I 0
i

[I 00
i

. The key
component of the algorithm is the Prune(B, f) operation. Any
operation that contracts the intervals on variables can be seen
as pruning, but for correctness we need formal requirements
on the pruning operator in ICP. Basically, we need to require
that the interval extensions of the functions converge to the
true values of the functions, and that the pruning operations
are well-defined, as specified below.

Definition 17 (�-Regular Interval Extensions). We say an
interval extension]f of f : Rn ! R is �-regular, if for some
constant c 2 R, for any B 2 Rn, |]f(B)| max(c||B||, �).
Definition 18 (Well-defined Pruning Operators [9]). Let F be
a collection of real functions, and] be a �-regular interval
extension operator on F . A well-defined (equality) pruning
operator with respect to] is a partial function Prune

]

:✓
BF⇥ F ! BF, such that for any f 2 F , B, B0 2 BF,

1) Prune
]

(B, f) ✓ B;
2) If Prune

]

(B, f) 6= ;, then 0 2]f(Prune
]

(B, f));
3) B \ {~a 2 Rn : f(~a) = 0} ✓ Prune

]

(B, f).

When] is clear, we simply write Prune. The rules can be
explained as follows. (W1) ensures that the algorithm always
makes progress. (W2) ensures that the result of a pruning is
always a reasonable box that may contain a zero, and otherwise
B is pruned out. (W3) ensures that the real solutions are never
discarded. We proved the following theorem in [9]:

Theorem 19. Algorithm 1 is �-complete if the pruning oper-
ators are well-defined.

B. ODE Pruning in an ICP Framework

We now study the algorithms for SMT formulas with
ODEs. The key is to design the appropriate pruning operators
for the solution functions of ODE systems. The pruning
operations here strengthen and formalize the ones proposed
in [7], [8], [12], such that �-completeness can be proved.

We recall some notations first. Let D ✓ Rn be compact
and g

i

: D ! D be n Lipschitz-continuous functions. Given
the first-order autonomous ODE system

d~y

dt
= ~g(~y(t, ~x0)) and ~y(0, ~x0) = ~x0 (5)

where ~x0 2 D, we write

y
i

: [0, T]⇥D ! D
i

to represent the i-th solution function of the ODE system. The
�-regular interval extension of y

i

is an interval function

]y
i

: (IF \ [0, T])⇥ (BF \D)! IF

such that for a constant c 2 R, for any time domain I
t

✓
IF \ [0, T] and any box of initial values B

~x0 ✓ BF \D, we
have

{x
t

2 R : x
t

= y
i

(t, ~x0), ~x0 2 B
~x0 , t 2 I

t

} ✓]y
i

(I
t

, B
~x0)

91108

and
|]y

i

(I
t

, B
~x0)| max(c · ||I

t

⇥B
~x0 ||, �).

We will also need the notion of the reverse of the ODE
system (5), as defined by

d~y�
dt

= ~g�(~y�(t, ~xt

)) and ~y(0, ~x
t

) = ~x
t

. (6)

Here, ~g� is defined as �~g, the vector of functions consisting
of the negation of each function in ~g, which is equivalent to
reversing time in the flow defined by the ODE system. That
is, for ~x0, ~xt

2 D, t 2 R, we always have

~x
t

= ~y(t, ~x0) iff ~x0 = ~y�(t, ~xt

). (7)

Naturally, we write](y�)i to denote the �-regular interval
extension of the i-th component of ~y�.

Algorithm 2 ODEPruning(]~y, B
~x0 , B ~x

t

, I
t

)

1: repeat
2: B0

~x

t

 Prunefwd(]~y, B
~x0 , B ~x

t

, I
t

)
3: I 0

t

 Prunetime(]~y, B
~x0 , B

0
~x

t

, I
t

)
4: B0

~x0
 Prunebwd(]~y, B

~x0 , B
0
~x

t

, I 0
t

)
5: until B

~x0 = B0
~x0
^B

~x

t

= B0
~x

t

^ I
t

= I 0
t

6: return (B0
~x0

, B0
~x

t

, I 0
t

)

The relation between the initial variables ~x0, the time
duration t, and the flow variables ~x

t

is specified by the
constraint ~x

t

= ~y(t, ~x0). Given the interval assignment on any
two of ~x0, ~x

t

, and t, we can use the constraint to obtain a
refined interval assignment to the third variable vector. Thus,
we can define three pruning operators as follows.

Remark 20. The precise definitions of the pruning operators
should map the interval assigments on all variables to new
assignments on all variables. For notational simplicity, in the
pruning operators below we only list the assignments that are
actually changed between inputs and outputs. For instance, the
forward pruning operator only changes the values on B

~x

t

.

Forward Pruning. Given interval assignments on ~x0 and t,
we compute a refinement of the interval assignments on ~x

t

.
Figure 1 depicts the forward pruning operation. Formally, we
define the following operator:

Definition 21 (Forward Pruning). Let ~y : [0, T]⇥D ! D be
the solution functions of an ODE system. Let B

~x0 , B
~x

t

, and
I
t

be interval assignments on the variables ~x0, ~x
t

, and t. We
define the forward-pruning operator as:

Prunefwd(B~x

t

, ~y) = Hull
⇣
B

~x

t

\]~y(I
t

, B
~x0)

⌘
.

Backward Pruning. Given interval assignments on ~x
t

and t,
we can compute a refinement of the interval assignments on
~x0 using the reverse of the solution function. Figure 2 depicts
backward pruning. Formally, we define the following operator:

Definition 22 (Backward Pruning). Let ~y : [0, T] ⇥ D ! D
be the solution functions of an ODE system, and let ~y� be the
reverse of ~y. Let B

~x0 , B
~x

t

, and I
t

be interval assignments on
the variables ~x0, ~x

t

, and t. We define the backward-pruning

t

X
t

X 0
tX0

T

Fig. 1: Forward Pruning. X0, X
t

, t represents the current
interval assignments, and X 0

t

is the refined interval assignment
on ~x

t

after pruning.

Algorithm 3 Prunefwd(]~y, B
~x0 , B ~x

t

, I
t

)

1: B0
~x

t

 �
2: I�t

 [I l

t

, I l

t

+ "]
3: while Iu

�t

< Iu

t

do
4: B0

~x

t

 Hull(B0
~x

t

[]~y(I�t

, B
~x0))

5: I�t

 I�t

+ "
6: end while
7: return B

~x

t

\B0
~x

t

operator as:

Prunebwd(B~x0 , ~y) = Hull
⇣
B

~x0 \]~y�(It

, B
~x

t

)
⌘
.

Time-Domain Pruning. Given interval assignments on ~x0

and ~x
t

, we can also refine the interval assignment on t by
pruning out the time intervals that do not contain any ~x

t

that is consistent with the current interval assignments on ~x
t

.
Figure 3 depicts time-domain pruning. Formally, we define the
following operator:

Definition 23 (Time-Domain Pruning). Let ~y : [0, T]⇥D ! D
be the solution functions of an ODE system. Let B

~x0 , B
~x

t

, I
t

be interval assignments on the variables ~x0, ~x
t

, and t. We
define the time-domain pruning operator as:

Prunetime(It

, ~y) = Hull
⇣
I
t

\ {I :]~y(I, B
~x0) \B

~x

t

6= ;}
⌘
.

t

T

X
t

X0

X 0
0

Fig. 2: Backward Pruning. X0, X
t

, t represents the current
interval assignments, and X 0

0 is the refined interval assignment
on ~x0 after pruning.

92 109

t

X
t

X0

T

T 0

Fig. 3: Time-Domain Pruning. X0, X
t

, t represents the current
interval assignments, and T 0 is the refined interval assignment
on t after pruning.

Overall, the pruning algorithm on based on ODE con-
straints iteratively applies the three pruning operators until a
fixed point on the interval assignments is reached.

Algorithm 4 Prunebwd(]~y, B
~x0 , B ~x

t

, I
t

)

1: B0
~x0
 �

2: I�t

 [I l

t

, I l

t

+ "]
3: while Iu

�t

< Iu

t

do
4: B0

~x0
 Hull(B0

~x0
[]~y�(I�t

, B
~x

t

))
5: I�t

 I�t

+ "
6: end while
7: return B

~x0 \B0
~x0

We show the more detailed steps in the three pruning
operations in Algorithm 2, 3, 4, and 5.

Algorithm 5 Prunetime(]~y, B
~x0 , B ~x

t

, I
t

)

1: I 0
t

 �
2: I�t

 [I l

t

, I l

t

+ "]
3: while Iu

�t

< Iu

t

do
4: B0

~x

t

]~y(I�t

, B
~x0)

5: if B0
~x

t

\B
~x

t

6= � then
6: I 0

t

= Hull(I 0
t

[I�t

)
7: else
8: I�t

 I�t

+ "
9: end if

10: end while
11: return I 0

t

Theorem 24. The three pruning operators are well-defined.

Proof: We prove that the forward pruning operator is
well-defined, and the proofs for the other two operators are
similar. Note that the definitions of well-defined pruning are
formulated for equality constraints compared to 0. Here we
use the function f = ~y(t, ~x0) � ~xt

in the pruning operator.
(Strictly speaking f is a function vector that evaluates to ~0 on
points satisfying the ODE flow. Here for notational simplicity
we just write f as a single-valued function and compare with
the scalar 0.)

First, (W1) is satisfied because of the simple fact that for
any boxes B1, B2 2 BF, we have Hull(B1 \B2) ✓ B1.

Next, suppose 0 62]f(Prunefwd(B~x

t

, ~y)�B
~x

t

). Then there
does not exist any ~a

t

2 Rn that satisfies both ~a
t

2 B
~x

t

and
~a

t

2 Prunefwd(B~x

t

, ~y). Since at the same time

Prunefwd(B~x

t

, ~y) = Hull
⇣
B

~x

t

\]~y(I
t

, B
~x0)

⌘
✓ B

~x

t

,

this requires that Prunefwd(B~x

t

, ~y) = ;. Consequently (W2)
is satisfied.

Third, note that]~y(I
t

, B
~x0) is an interval extension of ~y.

Thus, for any ~a
t

2 Rn such that ~y(t, ~x0) for some t 2 I
t

and
~x0 2 B

~x0 , we have ~a
t

2]~y(I
t

, B
~x0). Following the definition

of the pruning operator, we have ~a
t

2 Prunefwd(B~x

t

, ~y). Thus,
B

~x

t

\ Z
f

✓ Prunefwd(B~x

t

, f) and (W3) holds.

C. 98t-Formulas and Low-Order Approximations

For 98-formulas, if the universal quantification is only over
the time variables, we can follow the trajectory and prune away
the assignment on ~x0, ~x

t

, and t that violates the constraints
on the universally quantified time variable. In fact, although
the extra quantification complicates the problem, the universal
constraints improve the power of the pruning operations.

Here we focus on problems with one ODE system, which
can be easily generalized. Let ~y denote the solution functions
of an ODE system, we consider an 98t-formula of the form

9X~x09X~x
t

9[0,T]t8[0,t]t0. ~x
t

= ~y(t, ~x0) ^ '(~y(t0, ~x0)) (8)

Note that the problems encoded as ⌃2-SMT formulas as listed
in Section II-D are all of this form.

We consider '(~y(t0, ~x0)) as a special constraint on the ~x0

and t variables. Using this constraint, we can further refine the
three pruning operators as follows.

Definition 25 (Pruning Refined by 8t-Constraints). Let ~y :
[0, T] ⇥ D ! Rn be the solution functions of an ODE
system. Let B

~x0 , B
~x

t

, and I
t

be interval assignments on the
variables ~x0, ~x

t

, and t. Let '(~y(t0, ~x0)) be a constraint on the
universally quantified time variable, as in (8). We first define

]'(I
t

, B
~x0) = Hull({~a 2 Rn : ~a = ~y(t, ~x0), t 2 I

t

,

~x0 2 B
~x0 , and '(~a) is true.})

and define]'� by replacing ~y with ~y� in the definition
above. The forward pruning operator with ', written as
Prune'

fwd(B~x

t

, ~y), is defined as

Hull
⇣
B

~x

t

\]~y(I
t

, B
~x0) \]'(It

, B
~x0)

⌘

Backward pruning Prune'

bwd(B~x0 , ~y) is defined as

Hull
⇣
B

~x0 \]~y�(It

, B
~x

t

) \]'�(It

, B
~x

t

)
⌘
.

Time-domain pruning Prune'

time(It

, ~y) is defined as

Hull
⇣
I
t

\ {I :]~y(I, B
~x0) \B

~x

t

\]'(I
t

, B
~x0) 6= ;}

⌘
.

In general,]' can be computed by a recursive call to
DPLL(ICP), by solving the ⌃1-SMT problem '(~x). In many
practical applications, ' is of some simple form such as
~a ~x

t

 ~b, in which case simple pruning is shown in Figure 4.
Another useful heuristic in ODE pruning is to bound the range

93110

Invariant

t

X
t X 0

t

T

X0

Fig. 4: Pruning with 8t-Constraints

First-order Taylor Approximation

t

X
t

X 0
t

X0

T

Fig. 5: Pruning with Low-Order Taylor Approximations

of the derivatives for a vector space specified by ~g. Suppose for
any time t 2 [0, T], the derivatives ~g are bounded in [~l

g

, ~u
g

].
Then by the Picard-Lindelöf representation, we have

~x
t

=

Z
t

0
~g(~y(s, ~y0))ds + ~y0 2 [0, T] · [~l

g

, ~u
g

] + B
~x0

We can use this formula to perform preliminary pruning on
~x

t

, which is especially efficient when combined with 8t-
constraints. Figure 5 illustrates this pruning method.

IV. EXPERIMENTS

Our tool dReal implements the procedures we studied
for solving SMT formulas with ODEs. It is built on several
existing packages, including opensmt [3] for the general
DPLL(T) framework, realpaver [14] for ICP, and CAPD [1]
for computing interval-enclosures of ODEs. The tool is open-
source at http://dreal.cs.cmu.edu. All benchmarks and data
shown here are also available on the tool website.

All experiments were conducted on a machine with a
3.4GHz octa-core Intel Core i7-2600 processor and 16GB
RAM, running 64-bit Ubuntu 12.04LTS. Table I is a summary
of the running time of the tool on various SMT formulas
generated from bounded model checking hybrid systems. The
formulas typically contain a large number of variables and
nonlinear ODEs.

The AF model as we show in Table I is obtained from [15].
It is a precise model of atrial fibrillation, a serious cardiac
disorder. The continuous dynamics in the model concerns four

P #M #D #O #V delta R Time(s) Trace
AF 4 3 20 44 0.001 S 43.10 90K
AF 8 7 40 88 0.001 S 698.86 20M
AF 8 23 120 246 0.001 S 4528.13 59M
AF 8 31 160 352 0.001 S 8485.99 78M
AF 8 47 240 528 0.001 S 15740.41 117M
AF 8 55 280 616 0.001 S 19989.59 137M
CT 2 2 15 36 0.005 S 345.84 3.1M
CT 2 2 15 36 0.002 S 362.84 3.1M
EO 3 2 18 42 0.01 S 52.93 998K
EO 3 2 18 42 0.001 S 57.67 847K
EO 3 11 72 168 0.01 U 7.75 –
BB 2 10 22 66 0.01 S 0.25 123K
BB 2 20 42 126 0.01 S 0.57 171K
BB 2 20 42 126 0.001 S 2.21 168K
BB 2 40 82 246 0.01 U 0.27 —-
BB 2 40 82 246 0.001 U 0.26 —-
D1 3 2 9 24 0.1 S 30.84 72K
DU 3 2 6 16 0.1 U 0.04 –

TABLE I: #M = Number of modes in the hybrid system, #D =
Unrolling depth, #O = Number of ODEs in the unrolled formula,
#V = Number of variables in the unrolled formula, R = Bounded
Model Checking Result (delta-SAT/UNSAT) Time = CPU time (s),
Trace = Size of the ODE trajectory, AF = Atrial Filbrillation, CT =
Cancer Treatment, EO = Electronic Oscillator, BB = Bouncing Ball
with Drag, D1,DU = Decay Model.

Fig. 6: Above: Witness for the AF model at depth 23 and 1500
time units. Below: Experimental simulation data.

state variables and the ODEs are highly nonlinear, such as:
du

dt

= e+ (u� ✓

v

)(u
u

� u)vg
fi

+ wsg

si

� g

so

(u)

ds

dt

=
g

s2

(1 + e

�2k(u�us))
� g

s2s

dv

dt

= �g

+
v

· v dw

dt

= �g

+
w

· w

The exponential term on the right-hand side of the ODE is the
sigmoid function, which often appears in modelling biological
switches. On this model, our tool is able to perform a depth-
55 unrolling, and solve the generated logic formula. Such a
formula contains 280 nonlinear ODEs of the type shown here,

94 111

with 616 variables. The computed trace from dReal suggests
a witness of the reachability property that can be confirmed
by experimental simulation. Figure 6 shows the comparison
between the trace computed from bounded model checking
and the actual experimental simulation trace.

Fig. 7: Above: Witness computed for the CT model at depth
3 and 500 time units. Below: Experimental simulation data.

The CT model represents a prostate cancer treatment model
that contains nonlinear ODEs such as following:
dx

dt

= (↵
x

(k1 + (1� k1)
z

z + k2

��

x

((1� k3)
z

z + k4
+ k3))�m1(1�

z

z0
))x+ c1x

dy

dt

= m1(1�
z

z0
)x+ (↵

y

(1� d

z

z0
)� �

y

)y + c2y

dz

dt

=
�z

⌧

+ c3z

dv

dt

= (↵
x

(k1 + (1� k1)
z

z + k2
� �

x

(k3 + (1� k3)
z

z + k4
))

�m1(1�
z

z0
))x+ c1x+m1(1�

z

z0
)x

+(↵
y

(1� d

z

z0
)� �

y

)y + c2y

The EO model represents an electronic oscillator model that
contains nonlinear ODEs such as the following:

dx

dt

= �ax · sin(!1 · ⌧)
dy

dt

= �ay · sin((!1 + c1) · ⌧) · sin(!2) · 2
dz

dt

= �az · sin((!2 + c2) · ⌧) · cos(!1) · 2
!1

dt

= �c3 · !1
!2

dt

= �c4 · !2
d⌧

dt

= 1

The other models are standard simple nonlinear models (for
instance, bouncing ball with nonlinear friction), on which our
tool has no difficulty in solving.

V. CONCLUSION

In this paper we have studied SMT problems over the real
numbers with ODE constraints. We have developed �-complete
algorithms in the DPLL(ICP) framework, for both the standard
SMT formulas that are purely existentially quantified, as well

as 98-formulas whose universal quantification is restricted to
the time variables. We have demonstrated the scalability of our
approach on nonlinear SMT benchmarks. We believe that the
proposed decision procedures can scale on nonlinear problems
and can serve as the underlying engine for formal verification
of realistic hybrid systems and embedded software.

Ackowledgements. We are grateful for many important sug-
gestions from Jeremy Avigad, Andreas Eggers, and Martin
Fränzle. In particular, we formulated the notion of �-regular
interval extensions to avoid technical difficulties that Eggers
and Fränzle pointed out to us. We thank the anonymous
referees for various important comments.

REFERENCES

[1] CAPD: Computer assisted proofs in dynamical systems.
http://capd.ii.uj.edu.pl/index.php.

[2] F. Benhamou and L. Granvilliers. Continuous and interval constraints.
In F. Rossi, P. van Beek, and T. Walsh, editors, Handbook of Constraint
Programming, chapter 16. Elsevier, 2006.

[3] R. Bruttomesso, E. Pek, N. Sharygina, and A. Tsitovich. The opensmt
solver. In J. Esparza and R. Majumdar, editors, TACAS, volume 6015
of Lecture Notes in Computer Science, pages 150–153. Springer, 2010.

[4] A. Cimatti, S. Mover, and S. Tonetta. A quantifier-free SMT encoding
of non-linear hybrid automata. In FMCAD, pages 187–195, 2012.

[5] A. Cimatti, S. Mover, and S. Tonetta. SMT-based verification of hybrid
systems. In AAAI, 2012.

[6] J. Cruz and P. Barahona. Constraint satisfaction differential problems.
In CP, pages 259–273, 2003.

[7] A. Eggers, M. Fränzle, and C. Herde. SAT modulo ODE: A direct SAT
approach to hybrid systems. In ATVA, pages 171–185, 2008.

[8] A. Eggers, N. Ramdani, N. Nedialkov, and M. Fränzle. Improving
SAT modulo ODE for hybrid systems analysis by combining different
enclosure methods. In G. Barthe, A. Pardo, and G. Schneider, editors,
SEFM, volume 7041 of Lecture Notes in Computer Science, pages 172–
187. Springer, 2011.

[9] S. Gao, J. Avigad, and E. M. Clarke. Delta-complete decision proce-
dures for satisfiability over the reals. In B. Gramlich, D. Miller, and
U. Sattler, editors, IJCAR, volume 7364 of Lecture Notes in Computer
Science, pages 286–300. Springer, 2012.

[10] S. Gao, J. Avigad, and E. M. Clarke. Delta-decidability over the reals.
In LICS, pages 305–314, 2012.

[11] S. Gao, S. Kong, and E. Clarke. dReal: An SMT solver for nonlinear
theories over the reals. CADE, 2013.

[12] A. Goldsztejn, O. Mullier, D. Eveillard, and H. Hosobe. Including
ordinary differential equations based constraints in the standard cp
framework. In D. Cohen, editor, CP, volume 6308 of Lecture Notes in
Computer Science, pages 221–235. Springer, 2010.

[13] L. Granvilliers. Parameter estimation using interval computations. SIAM
J. Sci. Comput., 26(2):591–612, Feb. 2005.

[14] L. Granvilliers and F. Benhamou. Algorithm 852: Realpaver: an interval
solver using constraint satisfaction techniques. ACM Trans. Math.
Softw., 32(1):138–156, 2006.

[15] R. Grosu, G. Batt, F. H. Fenton, J. Glimm, C. L. Guernic, S. A. Smolka,
and E. Bartocci. From cardiac cells to genetic regulatory networks. In
CAV, pages 396–411, 2011.

[16] D. Ishii, K. Ueda, and H. Hosobe. An interval-based sat modulo ode
solver for model checking nonlinear hybrid systems. STTT, 13(5):449–
461, 2011.

[17] K.-I. Ko. Complexity Theory of Real Functions. BirkHauser, 1991.
[18] Y. Lin and M. A. Stadtherr. Guaranteed state and parameter estimation

for nonlinear continuous-time systems with bounded-error measure-
ments. Industrial and Engineering Chemistry Research, pages 7198–
7207, 2007.

[19] K. Weihrauch. Computable Analysis: An Introduction. 2000.

95112

